State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#34

- C-T Transfer Function and Frequency Response

Finding the Transfer Function from Differential Eq.

Recall: we found a DT system's Transfer Function $H(\mathrm{z})$ by taking the ZT of the Difference Eq. For a CT system we do the same kind if thing by taking the LT of the Differential Eq:

$$
a_{N} y^{(N)}(t)+\cdots+a_{1} \dot{y}(t)+a_{0} y(t)=b_{M} x^{(M)}(t)+\ldots+b_{1} \dot{x}(t)+b_{0} x(t)
$$

$$
\begin{aligned}
& L T\left\{a_{N} y^{(N)}(t)+\cdots+a_{1} \dot{y}(t)+a_{0} y(t)\right\} \\
& \quad=L T\left\{b_{M} x^{(M)}(t)+\ldots+b_{1} \dot{x}(t)+b_{0} x(t)\right\}
\end{aligned}
$$

So... can just

$$
Y(s)=\underbrace{\left[\frac{b_{M} s^{M}+\ldots+b_{1} s+b_{0}}{a_{N} s^{N}+\cdots+a_{1} s+a_{0}}\right]}_{H(s)} X(s)
$$

$$
\begin{aligned}
& Y(s)\left[a_{N} s^{N}+\cdots+a_{1} s+a_{0}\right] \\
& \quad=X(s)\left[b_{M} s^{M}+\ldots+b_{1} s+b_{0}\right]
\end{aligned}
$$

Finding the Transfer Function from the Circuit

Can find the freq. resp. of a circuit using impedance in terms of $j \omega$.
Now generalize: to find the TF... the complex variable s replaces $j \omega$:

- Use s-variable impedances: $Z_{C}(s)=1 / C s \quad Z_{L}(s)=L s$
- Replace input source time function symbol $x(t)$ by LT symbol $X(s)$
- Analyze circuit to find $Y(s) \ldots$ thing that multiplies $X(s)$ is T.F. $H(s)$

Example:

For this circuit the easiest approach is to use the Voltage Divider

$$
\begin{aligned}
& Y(s)=\left[\frac{1 / C s}{R+L s+(1 / C s)}\right] X(s) \Rightarrow \underbrace{\left[\frac{1 / L C}{s^{2}+(R / L) s+(1 / L C)}\right]} X(s) \\
& \text { A "standard" form: a ratio of two polynomials in } s
\end{aligned}
$$

- w/ unity coeff. on the highest power in the denom.

Poles and Zeros of Transfer Function

$$
H(s)=\frac{b_{M} s^{M}+\ldots+b_{1} s+b_{0}}{s^{N}+\cdots+a_{1} s+a_{0}}=\frac{B(s)}{A(s)}
$$

Can always normalize

this coeff. to 1
Assume there are no common roots in the numerator $B(s)$ and denominator $A(s)$.
(If not, assume they've been cancelled and redefine $B(s)$ and $A(s)$ accordingly)
Poles of $\boldsymbol{H}(\boldsymbol{s})$: The values on the complex s-plane where $|H(s)| \rightarrow \infty$
$\underline{\text { Zeros of } \boldsymbol{H}(\boldsymbol{s})}$: The values on the complex s-plane where $|H(s)|=0$

The roots of the denominator polynomial $A(s)$ determine N poles.
The roots of the Numerator polynomial $B(s)$ determine M zeros.

$$
H(s)=\frac{b_{M}\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{M}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{N}\right)}
$$

Example: Finding Poles and Zeros

Impulse Response of System

Sometimes looking at how a system responds to the impulse function (i.e., delta function) $\delta(t)$ can tell much about a system. Hitting a system with $\delta(t)$ is lot like ringing a bell to hear how it sounds...

Noting that the LT of $\delta(t)=1$ and using the properties of the transfer function and the LT transform:
$h(t)=\mathfrak{L}^{-1}\{H(s) \mathfrak{L}\{\delta(t)\}\}$

$$
h(t)=\mathfrak{L}^{-1}\{H(s)\}
$$

$$
h(t)=\mathfrak{F}^{-1}\{H(\omega)\}
$$

From PFE and Poles/Zeros we see that a TF like this: $\quad H(s)=\frac{B(s)}{A(s)}$...will have an impulse response with terms like this:

$$
h(t)=k_{1} e^{p_{1} t} u(t)+k_{2} e^{p_{2} t} u(t)+\cdots+k_{N} e^{p_{N} t} u(t)
$$

Some simplifying assumptions made here!

We almost always want this to decay (like a bell!): all poles $\operatorname{Re}\left\{p_{i}\right\}<0$

Stability of System

Definition: A system is said to be stable if its output will never grow without bound when any bounded input signal is applied... and that seems like a good thing!!!

Without going into all the details... a system with an impulse response that decays "fast enough" is said to be stable.

From our exploration of the effect of poles on the impulse response we say that:

For a Stable System

-Poles must be "in Left Half Plane"

- Zeros can be anywhere

RLC circuits are always stable

But... Once you start including linear amplifiers with gain > 1 this may not be true... especially if there is feedback involved

Relationship: Transfer Function and Freq. Resp.

Recall: CTFT = LT evaluated on $j \omega$ axis \ldots if $j \omega$ axis is inside ROC
Fact: For causal systems $\boldsymbol{j} \omega$ axis is inside ROC if all poles are in LHP

$$
H(\omega)=\left.H(s)\right|_{s=j \omega} \quad \text { If all poles are in LHP }
$$

Like freqz for DT frequency response...the MATLAB command freqs can be used to compute the Frequency Response from the Transfer Function coefficients:

From the Pole-Zero Plots we can Visualize the TF function on the s-plane:

Fig. 9-4. Shape of elastic membrane for a pair of poles and a zero.

From our Visualization of the TF function on the s-plane we can see the Freq. Resp.:

To get the frequency response $H(w)$ from the transfer function $\mathrm{H}(\mathrm{s})$ we replace s by $j w .$. this is graphically equivalent to "cutting along the jw axis"

Plots from my favorite book on op Amps: "Operational Amplifier:
Characteristics and Applications" by Robert G. Ivine, Prentice-Hall, 1981

Fig. 9-5. Pole-zero diagram showing the east face.

Can also look at a pole-zero plot and see the effects on Freq. Resp.

(a) Frequency response for pole close to jf axis

(b) Frequency response for pole far from jf axis

Fig. 9-6. Frequency response versus pole location.

As the pole moves closer to the $j \omega$ axis it has a stronger effect on the frequency response $H(\omega)$. Poles close to the $j \omega$ axis will yield sharper and taller bumps in the frequency response.

By being able to visualize what $|H(s)|$ will look like based on where the poles and zeros are, an engineer gains the ability to know what kind of transfer function is needed to achieve a desired frequency response... then through accumulated knowledge of electronic circuits (requires experience accumulated AFTER graduation) the engineer can devise a circuit that will achieve the desired effect.

Cascade of Systems

Suppose you have a "cascade" of two systems like this:

Thus, the overall frequency response/transfer function is the product of those of each stage:

$$
\begin{aligned}
& H_{\text {total }}(\omega)=H_{1}(\omega) H_{2}(\omega) \\
& H_{\text {total }}(s)=H_{1}(s) H_{2}(s)
\end{aligned}
$$

Obviously, this generalizes to a cascade of N systems:

$$
\begin{aligned}
& H_{\text {total }}(\omega)=H_{1}(\omega) H_{2}(\omega) \cdots H_{N}(\omega) \\
& H_{\text {total }}(s)=H_{1}(s) H_{2}(s) \cdots H_{N}(s)
\end{aligned}
$$

Continuous-Time System Relationships

Time Domain

$\frac{d^{N} y(t)}{d t^{N}}+a_{N-1} \frac{d^{N-1} y(t)}{d t^{N-1}}+\cdots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=$ $b_{M} \frac{d^{M} x(t)}{d t^{M}}+b_{M-1} \frac{d^{M-1} x(t)}{d t^{M-1}}+\cdots+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)$

Freq Domain

$$
H(s)=\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots+b_{1} s+b_{0}}{s^{N}+a_{N-1} s^{N-1}+\cdots+a_{1} s+a_{0}}
$$

$$
H(\omega)=\left.H(s)\right|_{s=j \omega}
$$

This Chart provides a "Roadmap" to the CT System Relationships!!!

In practice you may need to start your work in any spot on this diagram...

1. From the differential equation you can get:
a. Transfer function, then the impulse response, the pole-zero plot, and if allowable you can get the frequency response
2. From the impulse response you can get:
a. Transfer function, then the Diff. Eq., the pole-zero plot, and if allowable you can get the frequency response
3. From the Transfer Function you can get:
a. Diff. Eq., the impulse response, the pole-zero plot, and if allowable you can get the frequency response
4. From the Frequency Response you can get:
a. Transfer function, then the Diff. Eq., the pole-zero plot, and the impulse response
5. From the Pole-Zero Plot you can get:
a. (up to a scaling factor) Transfer function, then the Diff. Eq., the impulse response, and possible the Frequency Response
6. From the Circuit Diagram you can get:
a. Transfer function, then the Diff. Eq., the impulse response, and possibly the Frequency Response
