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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #6
• Sinusoidal Time Functions 
• Complex-Valued Sinusoidal Time Functions
• Sampling Sinusoids: DT Sinusoids 
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T is the Period of the sinusoid…  it is related to the frequency o
to is a time shift… it is related the phase 

Sinusoidal Time Function

( ) sin( )ox t A t  

A sinusoid is completely defined by its three parameters:
• Amplitude A (for us typically in volts or amps but could be other unit)
• Frequency o in rad/sec  (not Hz!)
• Phase  in rad  (not degrees!)

( ) sin( )ox t A t  

(rad/sec)sec + rad = rad(Similar for cosine)
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Phase shift (often just shortened to phase) shows up explicitly in the equation but 
shows up implicitly in the plot as a time shift (because the plot is vs. time). 

We can write the time shift of a function by replacing t by t + to. So start with an 
unshifted sine function Asin(ot) and time shift it by to. Then we get:

sin( ( )) sin( )o o o o oA t t A t t    

(Unit-wise this makes sense!!!)

Relation between Period and Frequency ( ) sin( )ox t A t  
If T is the period… the sine’s argument must change by 2 as t goes from 0 to T

( ) ( 0 )o o oT T        2oT 

2

o

T 


 2
o T

  (Can always check via units!)

Relation between Phase and Time Shift

o ot 

or

This is important in the lab… 
You can measure time shift on the scope but need phase shift for the math
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There are 2 radians/cycle so…   (fo cycles/sec) (2 radians/cycle) gives rad/sec

f 2

Relation between Radian Frequency and Cyclic Frequency

No different from any unit conversion: yards to meters, dollars to euros, etc!

Frequency is nothing more than the rate of change of angle… and the unit used 
depends on the unit used for angles.

Radian Frequency o: angle is measured in radians…  rad/sec
Cyclic Frequency   fo: angle is measured in cycles…  cycles/sec = Hz
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Complex Sinusoidal Time Function

( ) ( )( ) cos( )
2

o oj t j t
o

Ax t A t e e            

In many cases it is desirable to write a real-valued sinusoid in terms of 
“complex-valued sinusoids”.  This is a math trick that – believe it or not! –
makes things easier to work with!!!

This comes from Euler’s Formula:

cos( )
2

j je e 





Re

Im je 

je 

2cos( )

cos( ) sin( )
cos( ) sin( )

j

j

e j
e j





 

 

 

  Re

Im
je 

je 

cos( )

Another form of Euler’s Formula:
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(
)
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(
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( ) ( )( ) cos( )
2

o oj t j t
o

Ax t A t e e            

Exploring the Complex Sinusoidal Terms

Two complex values with 
opposite angles

Re

Im ( )oj te  

( ) ( )o oj t j te e      

Rotate opposite directions… due to negative sign

Imaginary part always cancels!

http://www.cic.unb.br/~mylene/PSMM/DSPFIRST/chapters/2sines/demos/phasors/graphics/phasorsn.mov
Here is a link to a Quicktime movie of these rotating…

Link to another Web Demo of this…

1. Open the web page

2. Click on the box at the top labeled Two

“Positive Frequency” Term

“Negative Frequency” Term
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Example of Usefulness of the Complex Sinusoidal Terms
(or… “Phasors Revisited”!)

Suppose you have the RL circuit shown below with a sinusoidal input voltage 
and you want to find the current i(t) (through R or through L… they are the 
same!) R = 10

L = 2H
(100 /4) (100 /4)

/4 100 /4 100

( ) 6cos(100 / 4)
6
2
3 3

j t j t

j j t j j t

x t t

e e

e e e e

 

 



  

 

 

   

 

By KVL:  x(t) = vR(t) + vL(t) Then… use the “device rules”:
( ) ( )

( )( )

R

L

v t Ri t
di tv t L

dt





( ) ( ) ( )di tL Ri t x t
dt

  A differential equation!

Now since we’ve written the input as a sum of two things we can use 
linearity (aka superposition) and consider each term alone… then sum 
results. 

Values picked 
for ease not to 

be realistic!
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/4 100( )
( ) 3p j j t

p

di t
L Ri t e e

dt
 So… subbing in only the positive frequency term:

Thus… we need an i(t) that combines with its derivative to give an exponential…  
We can guess that i(t) must be a similar exponential: 100

100

( )

( )
100

p

p

j j t
p p

jp j t
p

i t A e e

di t
j A e e

dt







So plugging in our guess gives

   100 100 /4 1002 100 10 3p pj jj t j t j j t
p pj A e e A e e e e   

  100 /4 100200 10 3p pj j j t j j t
p pj A e A e e e e   

Combining terms:

Must be Equal!

 
/43

10 200
p

j
j

p
eA e

j


 



/4
0.73

1.52

3 0.015
200.25

j
j

j

e e
e


 

Convert to 
Polar!
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/4 100( ) ( ) 3 j j tn
n

di tL Ri t e e
dt

  So… similarly for the negative frequency term:

Now…We can guess that 100 100( )( ) 100n nj jj t j tn
n n n

di ti t A e e j A e e
dt

    

So plugging in our guess and solving like before gives

0.730.015nj j
nA e e  0.730.015pj j

pA e e Compare

Same magnitude, opposite sign phase… that will always happpen!!
So…. we don’t really need to do the negative part… we can “guess” it!

So finally we have: ( ) ( ) ( )p ni t i t i t 

0.73 100 0.73 1000.015 0.015j j t j j te e e e  

(100 0.73) (100 0.73)0.030
2

j t j te e     

0.030cos(100 0.73)t 
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That looked like quite a bit of work… where is the advantage of the 
complex view??

1. Try re-doing this by directly using the cosine
• It can be done but it requires lots of trig identities

2. More importantly… this leads to the idea of phasors
• We saw that we only need to the positive frequency part
• We saw that at some point the exp(j100t) term falls out…
• So… “phasors” capture both those short-cuts
• And we no longer have to directly deal with the Diff. Eq.

R = 10
L = 2H/4

( ) 6cos(100 / 4)

6 j

x t t

X e 

 




100 2L oZ j L j  

Find total impedance: 10 200T LZ R Z j   

Find current phasor: 
/4 /4

0.73
1.52

6 6/ 0.030
10 200 200.25

j j
j

T j

e eI X Z e
j e

 
   



 

Convert to Sinusoid: ( ) 0.030cos(100 0.73)i t t 

Ohm’s Law

Same!!!
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Big Ideas for Complex Sinusoids

1. Euler’s formula connects real-world sinusoids to the math-only idea of 
complex sinusoids

2. Although it seems things are made more complex (pun intended!) this 
actually simplifies the math…
• Working with exponentials is always easier than sinusoids!

3. We saw that it leads to being able to dispense with the differential equation
• We’d like to do this for other signals than only sinusoids
• Fourier’s methods allow us to do just that!!!
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Sampling Sinusoids… DT Sinusoids

Sensor
Analog

Electronics ADC Digital Elec.
(Computer) DAC

Optional

x[n] is just a stream 
of numbers

x(t)

t

ADC Clock sets how 
often samples are taken

How closely should the samples be spaced??

x[n]

n

At first thought we might think we need to have the samples still “look like” 
the original sinusoid…  But that turns out to be excessive, as our theory will 
show eventually show.  
Looking at the samples x[n] above they don’t quite really look like a 
sinusoid… yet they are taken at a rate suitable for most applications!

So… how do we determine how fast we need to sample???
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t (sec)

t (sec)

t (sec)

DT Samples….  What CT Sinusoid did they come from????

They could have come from this blue one…

But…They could have come from this RED one!!!
Thus… if we 
want to be able 
to tell these two 
apart we need to 
sample faster!!
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Let Ts be the time spacing between samples…  Then Fs = 1/Ts as the “sampling 
frequency” in samples/sec.

Then if we have a CT sinusoid x(t) = cos(2fot) that is sampled we have

( ) cos(2 )ox t f t [ ] ( ) cos(2 )
o

s o sx n x nT f T n


 




[ ] cos( )ox n n  2 o
o

s

f
F

 

Units are “rad/sample”

Discrete-Time Sinusoid

So… to help visualize this:

1
2cos( ) o oj n j n

on e e      
Re

Im 8j ne


8


8j ne

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Re

Re

Re

Im

Re

Im

n = 2

n = 2

Re

Im

Re

Im

n = 3

n = 3

Im

Im

n = 4

n = 4

Re

Im

Re

Im

n = 1

n = 1

7
8o


 

9
8o


 

So… a DT frequency >  rad/sample looks exactly like 
some other frequency < .  This is called “Aliasing”.
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So to avoid this “aliasing” when sampling a CT sinusoid to make a DT sinusoid 
we must require that:

2
s

o
Ff  22

sF

o
sF

   

Thus… for “proper sampling” we need to choose our sampling rate to be 
more than double the highest frequency we expect!!!

This is consistent with some real-world facts you may know about:
• High-Fidelity Audio contains frequencies up to only about 20 kHz
• CD digital audio has a sampling frequency of Fs = 44.k Hz > 2x20kHz


