Measuring the Frequency Response of a System

Given some box containing an unknown system we wish to measure its frequency response in the lab. Note that by wishing to do this we are *assuming* that it is linear, time-invariant; otherwise the idea of frequency response doesn't exist. How do we do this? Well, remember that we know that $H(\omega)$ causes a multiplicative change in the input sinusoid's amplitude and an additive change in the input sinusoid's phase. Thus, if for a bunch of sinusoids at different frequencies we could measure:

- 1. the ratio of output amplitude to input amplitude
- 2. the phase shift between output and input

...then we could get a rough plot of $|H(\omega)|$ vs. ω and $\angle H(\omega)$ vs. ω . The setup would look like this:

You would measure the output amplitude, the input amplitude, and the difference in time between the zero-crossings of the two sinusoids; then you would convert the time difference into a phase shift for the particular frequency being used.

The plots below show how this would look for two different frequencies; note that the input amplitude was set to be 1 to make computing the amplitude ratio easy.

The following table would result if you performed the above procedure at each of the frequencies listed in the table; the two highlighted rows are for the two cases shown above.

	ω	$ H(\omega) $	$\angle H(\omega)$	
_	(rad/sec) 0 1.00		(radians)	If you plot these results and fill in between the plotted points with a smooth curve you get the
			0	
	628	0.45	-0.35π	plots shown below for the frequency response
	1257	0.24	-0.42π	of the system. This plot gives an experimental
	1885	0.16	-0.45π	characterization of the system's frequency response. You could use this to try to find an equation for $H(\omega)$ that would closely fit these experimental curves. You could then use that
	2513	0.12	-0.46π	
	3142	0.10	-0.47π	
	6283	0.05	-0.48π	
	9425	0.03	-0.49π	result for further analysis & design.
	12566	0.03	-0.49π	
	15708	0.02	-0.49π	
	18850	0.02	-0.49π	
	21991	0.01	-0.50π	
	25133	0.01	-0.50π	
	28274	0.01	-0.50π	
	31416	0.01	-0.50π	

