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Measuring the Frequency Response of a System 
Given some box containing an unknown system we wish to measure its frequency 
response in the lab.  Note that by wishing to do this we are assuming that it is linear, 
time-invariant; otherwise the idea of frequency response doesn�t exist. How do we do 
this?  Well, remember that we know that H(ω) causes a multiplicative change in the input 
sinusoid�s amplitude and an additive change in the input sinusoid�s phase.  Thus, if for a 
bunch of sinusoids at different frequencies we could measure: 

1. the ratio of output amplitude to input amplitude 
2. the phase shift between output and input 

�then we could get a rough plot of  |H(ω)|  vs. ω and  ∠H(ω) vs. ω.  The setup would 
look like this: 
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You would measure the output 
amplitude, the input amplitude, and 
the difference in time between the 
zero-crossings of the two sinusoids; 
then you would convert the time 
difference into a phase shift for the 
particular frequency being used. 
 
The plots below show how this 
would look for two different 
frequencies; note that the input 
amplitude was set to be 1 to make 
computing the amplitude ratio easy. 
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Because the output LAGS the input,  
the angle becomes negative: � 0.35π radians 

Output = 0.45 

Input = 1.0 

∆t = 0.00175 sec ∆φ = ω∆t 
      =(200π)(0.00175) = 0.35π radians
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Because the output LAGS the input,  
the angle becomes negative: � 0.47π radians 

Output  
  = 0.1 

Input = 1.0 

∆t = 0.00047 sec
∆φ = ω∆t 
      =(1000π)(0.00047)  = 0.47π radians 
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The following table would result if you performed the above procedure at each of the 
frequencies listed in the table; the two highlighted rows are for the two cases shown 
above. 
 
         ω  |H(ω)|  ∠H(ω) 
    (rad/sec)   (radians) 
         0     1.00                0 
         628     0.45     -0.35π 
       1257     0.24     -0.42π 
       1885     0.16     -0.45π 
       2513     0.12    -0.46π 
       3142     0.10    -0.47π 
       6283     0.05    -0.48π 
       9425     0.03    -0.49π 
     12566     0.03    -0.49π 
     15708     0.02    -0.49π 
     18850     0.02    -0.49π 
     21991     0.01    -0.50π 
     25133     0.01    -0.50π 
     28274     0.01    -0.50π 
     31416     0.01    -0.50π 
 
 
 

If you plot these results and fill in between the 
plotted points with a smooth curve you get the 
plots shown below for the frequency response 
of the system.  This plot gives an experimental 
characterization of the system�s frequency 
response.  You could use this to try to find an 
equation for H(ω) that would closely fit these 
experimental curves.  You could then use that 
result for further analysis & design. 
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