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Abstract—Classical localization systems based on TDOA/FDOA 
use a two-stage estimation approach.  In the first stage, pairs of 
sensors share data to estimate TDOA/FDOA. Then, the extracted 
TDOA/FDOA measurements are used to estimate the emitter 
location.  In some recently published methods, an optimal single-
stage approach named Direct Position Determination (DPD) has 
been proposed to improve the position estimation accuracy. 
However, unlike the classical two-stage method where the 
TDOA/FDOA estimation can be distributed across all sensors, 
DPD processes all the received signals together at a single sensor 
node. However, when sensors have limited computational 
capabilities it is desirable to distribute the computation across all 
sensors. Furthermore, concentrating all the processing into a 
single node makes the location system less robust to the loss of 
sensors. In this paper, we develop a distributed localization 
method with the goal of reducing the computational load on each 
sensor and increasing the reliability of the system. 

 

I. INTRODUCTION 

One of the most accurate and common methods for passive 
radio signal localization is based on frequency-difference-of-
arrival (FDOA) and time-difference-of-arrival (TDOA) 
estimation. The classical approach to this method uses two 
stages to estimate the signal position. In the first stage, TDOA 
and FDOA are estimated from the cross-correlation of signals 
received by several pairs of sensors [1]; this is done by 
computing the cross ambiguity function (CAF) [2] and finding 
the peak of its magnitude surface [1], [2]. In [4] and [5], a 
Fisher Information based data compression method has been 
suggested to reduce the amount of data transmission and 
improve the communication performance between each pair 
of sensors. In the second stage of the classic method the 
TDOA/FDOA estimates are used in statistical processing to 
locate the emitter [3]. Suppose that the lowpass equivalent 
(LPE) model of the received signal is 

 

  ˆ ˆ( ) ( ) ( )dj t
r ds t e s t t     ,                (1) 

where ˆ( )s t  is the LPE of the transmitted signal, d is the 

Doppler, d  is the delay for the received signal,  is a 
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complex number and ( )t is the LPE of the noise [10].  Now, 

suppose that two sensors R1 and R2 receive the LPE signals 

1ˆ ( )rs t and 2ˆ ( )rs t , respectively. Stein [1] showed that the 

maximum likelihood (ML) estimate for TDOA and FDOA can 
be obtained by finding the peak of the magnitude of the cross 
ambiguity Function (CAF) given by 
 

  *
12 1 2ˆ ˆ( , ) ( ) ( ) i t

r rCAF s t s t e dt  



  ,       (2) 

which measures the correlation between 1ˆ ( )rs t and a Doppler-

shifted-by- and delayed-by- version of 2ˆ ( )rs t . Stein [2], 

Wax [12], Fowler and Hu [13] and Yeredor and Angel [14] 
have derived formulas for the CRLB on TDOA and FDOA.  

Recently, a new method named Direct Position 
Determination (DPD) based on TDOA/FDOA emitter location 
has been proposed to estimate the emitter location in one stage 
without extracting the TDOA/FDOA in a separate stage [9]. 
Weiss and Amar [7], [8], [9] showed that the two-stage 
method is not necessarily optimal because in the first stage of 
these methods, the TDOA and FDOA estimates are obtained 
by ignoring the fact that all measurements should be 
consistent with a single emitter location. In other words, 
although each TDOA/FDOA estimation is optimal in the first 
stage and the second stage is optimal (given the results of the 
first stage), the whole two-stage method is not optimal. In 
related work, Kay and Vankayalapati [11] developed the 
generalized likelihood ratio (GLR) detector based on the 
received signals from all sensors, and the DPD location result 
naturally appears as the ML estimate used in the GLR.  This 
shows another advantage of DPD over the classical two-stage 
method: the classical method can’t make use of the data from 
a CAF whose peak is undetectable due to low SNR – yet the 
DPD method can. 

In the DPD method, we need all the received signals 
together at a single point to start the location estimation 
processing. Consequently, all sensors have to transmit their 
received signals to a common site, which usually is one of the 
sensors so we will refer to this as the common sensor. It 
would be also desirable to use some data compression 
methods to reduce the amount of data transmission [16][18]. 
The common sensor then uses the received signals to form a 
series of matrices (one for each point on an x-y location grid) 



 

and computes the maximum eigenvalue of each of these 
matrices; the location estimate is the grid point that produced 
the largest of these maximum eigenvalues. 

As mentioned above, the one-stage DPD method achieves 
more accurate results compared to classic two-stage methods. 
However, in the published papers, the authors did not address 
the issues of computation and data transmission for DPD, 
which create some difficulties that may limit DPD application 
in practice. The first problem is the large amount of 
computations that are to be done by only the common sensor. 
As mentioned above, in DPD method we need all received 
signals together to start the estimation process. Thus, all 
sensors should send their received signals to one common 
sensor to start the estimation process. The common sensor will 
do all mathematical computations having all received signals. 
This leads to a large computational load on only one point in 
the network and no computational load on other members of 
the sensor network, which requires any one sensor in the 
system to be computationally capable of doing the complete 
set of computations needed to locate an emitter.  In scenarios 
where the amount of computational capabilities any one 
sensor possesses is limited, this centralized approach is not 
desirable. The other problem is the high dependence of the 
whole network on the common sensor. In this scenario, if we 
lose the common sensor during computations, we will lose 
everything. In other words, it is not desirable to rely on only 
one point in the sensor network for all computations and data 
collection, because if we lose that sensor for any reason, then 
we will lose all intermediate and final results.  

In this paper, we develop a method to increase the 
flexibility and feasibility of the one-stage DPD method. In this 
method, we use distributed data computations in the sensor 
network to reduce the computational load on any one sensor.  

II. BACKGROUND 

In this section we provide some more details about the 
one-stage localization method (DPD) and its formulation [9]. 
Suppose that there are L moving sensors in a sensor network 
intercepting the transmitted signal in one short snapshot. The 
complex signal observed by the lth sensor is  

 
2ˆ ( ) ( ) ( ),lj f t

rl l l ls t s t e w t     

where ( )s t  is the transmitted signal, l  is an unknown 

complex path attenuation,  fl  is the Doppler shift, l is the 

signal delay and ( )lw t is a white, zero mean, complex 

Gaussian. Assume that each sensor collects N time samples 
sampled with sampling frequency 1 /s sF T .Then, we have 
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where ˆ
rls  is N samples of the received signal at lth sensor, ŝ  

is N samples of the transmitted signal, fl  is the Doppler shift 
and lD   is the time sample shift operator by 

( / )l l sn T samples. We can write ln
l D D where D  is 

an N N permutation matrix defined as [ ] 1 if 1ij i j  D  , 

0, 1[ ] 1N D  and [ ] 0ij D otherwise. 

According to [9] and [11], the estimated transmitter’s 
position in TDOA/FDOA-based one-stage method is found as 

follows.  Let   1

G

i i
p be grid points of possible emitter 

locations.  For each grid point form the matrix  
 

1 1 1 2 2 2ˆ ˆ ˆ ,
i

H H H H H H
r r L L rL  pV D W s , D W s , ... , D W s

 
 
where the delay and Doppler operators correspond to the path 
between the grid point and the respective sensor [9].  For each 

 

grid point form the L L  matrix 
i i i

Hp p pQ V V  and find its 

largest eigenvalue.  The location estimate is then the grid 
point that maximizes the largest eigenvalue, that is 

 

maxˆ arg max{ ( )}
i

i

 p
p

p Q  .                          (3) 

It is clear that a large amount of computation must be done to 
find the location and all of it is done at the common sensor. 

It is interesting to mention that in the single-stage DPD  
method, the (i,j)th element of the matrix Q is the value of the 
CAF between the signals received by sensors i and sensor j [9], 
[11] and that is why in [11] this matrix is called the Cross 
Ambiguity Matrix (CAM) and is given by 

 

( , )ˆ ˆ[ ] [ ] [ ] ,H H H H
ij ij ri i i j j rj ij    Q V V s W D D W s CAF     (4) 

 
where  and   are the corresponding TDOA and FDOA 
between sensors i and j and emitter located at a grid point. 
Note that the diagonal elements in the CAM are the Auto-
Ambiguity Function of the received signals at TDOA = 0 and 
FDOA = 0 which is equal to the energy of the received signals.  

III. APPROXIMATED DPD 

In this section, we develop a method to distribute and 
reduce the amount computation based on eigenvalue 
approximation. This then increases the flexibility and 
feasibility of one-stage geolocation method. 

Definition (Gershgorin’s disc) [15]: Assume that A is an 

n n  complex-valued matrix with entries ija and 

i ijj i
P a


 is the summation of the absolute values of all 

non-diagonal elements of the ith row. Then, the 
set  :i ii iD z z a P     is called the ith Gershgorin’s 

disc of A. This disc contains the interior and boundary points 

of a circle with radius of iP and centered at iia in complex 

plane. 



 

Theorem 1 (Gershgorin’s Theorem) [15]: Every 
eigenvalue of matrix n n

ija    A   lies within at least one of 

the Gershgorin discs. In other words, every eigenvalue λ of 
matrix A satisfies 

 
 , ;ii i i ijj i

i a P P a 


      .               (5) 

 
    Theorem 2 [15]: Assume that A is an n n  complex 

valued matrix with entries ija , 
i ijj

R a is the summation 

of the absolute values of all elements in the ith row, and 

j iji
T a is the summation of the absolute values of all 

elements in the jth column. Let max i
i

R R  and max j
j

T T . 

Then, the absolute value of each eigenvalue λ of matrix A 
satisfies 

, min( , )R T    .       (6) 

 
As mentioned above, in TDOA/FDOA-based one-stage 

method, the (i,j)th element of the cross ambiguity matrix 
(CAM) or Q in equation (3) is the value of CAF between the 
signals received by sensors i and sensor j ([9],[11]) and we 
name it as CAFij. The emitter location is estimated by 
computing the maximum eigenvalues of the CAM (or Q) at 
each grid point. Since the CAM is Hermitian and positive 
definite, the eigenvalues of CAM are real and positive. 
Moreover, since CAM is a Hermitian matrix, we have, R=T in 
Theorem 2 and consequently, min( , )R T R . Thus, for the 

CAM, the inequality in (6) can be replaced by 
 

max

, max( )

ˆ max( ),

i
i

i ij
j

i
i

CAF

CAF CAF

CAF

 



 





  (7) 

where max̂  is the upper bound on eigenvalues of the CAM.  

Suppose that we have L receiving sensors and each one of 
them broadcasts its received signal to all other sensors in the 
sensor network. Then, each sensor i is able to compute all 
CAFij 

 for  j=1... L  and consequently, it is able to compute 

1

L

i ijj
CAF CAF


 . Now, if we approximate the largest 

eigenvalue of CAM by the upper bound on the eigenvalues 
(

max max
ˆ  ), then the location estimation will be determined 

by the point having the largest 
max̂ .  

Here is the scenario:  
1- Each sensor broadcasts its received signal in the sensor 

network. 
2- Each sensor i computes 

ijCAF ’s in TDOA/FDOA plane 

and then maps them from the TDOA-FDOA plane to the 
X-Y (emitter position) plane. The mapping will be done 

very easily knowing the position and velocity of the 
sensors and also the grid point position. 

3- Each sensor i computes 
1

L

i ijj
CAF CAF


  by adding up 

the CAFij’s and then finds the peak of CAFi (named 
CAFi,peak) and its location (xi,peak , yi,peak) and then transfers 
the three numbers xi,peak , yi,peak 

and CAFi,peak to a common 
sensor (or to all other sensors since there are just three 
numbers and there is no communication load to transfer 
them). Note that this step is motivated by Gershgorin’s 
Theorem. 

4- According to (3) and (7), the emitter location estimate is 
taken as the (xi,peak , yi,peak) corresponding to the largest 
CAFi,peak  over all i. 
 
Note that in the original DPD method, we need to re-

compute and form the matrix CAM (or Q) for each grid point 
and find the largest eigenvalue of that matrix each time, which 
leads to a huge amount of computation especially when the 
number of receiving sensors gets larger. Moreover, all of these 
computations would be done at one single point. But, the 
method outlined above does not need to form the matrix CAM 
(or Q) at all nor does it need to do computationally expensive 
computations of the largest eigenvalue each time. Thus, in the 
new method, not only has the costly eigenvalue computation 
been removed, but also the process is distributed among all 
receiving sensors. When implementing DPD in a scenario 
where each sensor has limited computational abilities, it is 
desirable to minimize the amount of computation done by 
each sensor rather than minimize the total computational 
complexity.  To compare the computational load suppose that 
there are L sensors trying to estimate the emitter location in an 
M M grid plane. In the original DPD method, the common 
sensor needs to compute the CAM for each grid point. Since 
CAM is a Hermitian L L matrix formed by CAFs, the 
common sensor just needs to find all the entries on and above 
the main diagonal. This is equivalent to computing L(L-1)/2  
CAFs (as non-diagonal elements) and L signal energies (as 
diagonal elements). Moreover, the common sensor needs to 
calculate the largest eigenvalue of the matrix for each grid 
point ( 2N times). On the other hand, in the suggested method, 
each sensor just needs to find (L-1) CAFs and one signal 
energy. In addition, they don’t need to form the matrix CAM 
and find its eigenvalues. Thus, rather than having one sensor 
compute L(L-1)/2 CAFs as in the original DPD, in the method 
propose here each sensor computes only (L-1) CAFs; 
furthermore, each sensor performs a simple Gershgorin 
estimation rather than a complex eigenvalue computation. 

 It is worth saying that in the proposed method, if we lose 
any one of the sensors or even if we lose a couple of them, it 
may reduce the accuracy of estimation because of missing 
some data, but the rest of the receivers can continue the 
estimation process with no interruption. 

In the proposed method, if we ignore the maximum 

operator term in equation (7) and just take 
max

ˆ
iCAF   for 

only one arbitrary sensor i , then the results will be equivalent 
to a method named CAF-MAP in [6] which has less quality 



 

compared to DPD and Approximated DPD. In [11], we can 
also see another approach named as pair-wise maximum CAF 
detector that is based on comparing the value of 

,
max max ij

j
CAF

 
 with a threshold CAF for only one arbitrary 

i as reference sensor ( ,   are TDOA and FDOA). The 

results in [11] showed that this method also has much lower 
quality in detection compared to the GLRT detector based on 
largest eigenvalue; no results were provided in [11] on the 
location accuracy of the pair-wise maximum CAF method. 

IV. SIMULATION 

The simulation results for many different cases show that 
the eigenvalue upper bound is very close to the true largest 
eigenvalue. However, this approximation lowers the quality of 
the estimation slightly. We examined the effect of the 
proposed approximation on the estimation accuracy using 
Monte-Carlo computer simulations (with 500 runs each time). 
In this simulation, we assumed that a set of 8 moving sensors 
receive the signal from one stationary emitter. There exists a 
cross ambiguity function for each two of the sensors. The 
sampling frequency is 80 kHz and the number of samples is 
equal to 4096. Fig.1 and Fig.2 show the effect of eigenvalue 
approximation on RMS error and standard deviation of emitter 
location estimation for X and Y dimensions.  

 

 
(a)                                                                (b) 
Fig. 1. RMS errors for X and Y versus SNR. 

 

 
(a)                                                              (b) 

Fig. 2. Standard Deviation for X and Y versus SNR. 
 

V. CONCLUSION 

The DPD method is a major new development in 
TDOA/FDOA-based emitter location that provides significant 
improvement in performance at low SNR levels.  However, 
that improvement comes at a cost of significantly more 
computational complexity. Worse, as DPD was proposed, that 

complexity is all concentrated at one computing node, which 
is different from the classical method where the computations 
are distributed evenly among the sensors. Furthermore, unlike 
the classical method, the location processing is highly 
complex (requiring the computation of eigenvalues for each 
grid point).  The approximate DPD method proposed here 
exploits the simplicity of Gershgorin’s theorem to 
approximately compute the largest eigenvalue without the 
high cost of exactly computing it.  This enables each sensor to 
locally make its best estimate of the location based on that 
data it has. These locally-generated estimates are then 
transmitted to a central location where a final decision is made.  
This development allows DPD to be implemented in a 
decentralized manner where no single sensor is required to do 
an unfair share of the computations, yet the performance 
improvement of DPD is not sacrificed. 
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