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ABSTRACT

We consider the problem of a rogue introducing bias into

a network estimating location under the time difference of

arrival (TDOA) method. In particular we consider how a

rogue by injecting only a single false sensor position can

drive the network’s location estimate a specified distance

away from the true value. The least squares (LS) residuals is

minimized to find the false location to inject given the rogue’s

desired distance offset. In order to illustrate the success of

our method, we consider the statistical tools that the locating

network might employ to handle our false information injec-

tion including least squares and in the presence of outliers

robust least median squares (LMS). We show that our method

can successfully bias the location estimate of an estimating

network when both LS and LMS methods are used.

Index Terms— Emitter location, TDOA, non-linear least

squares, information injection

1. INTRODUCTION

Sensor networks communicate using a shared wireless medium,

and thus it is possible for a rogue sensor to infiltrate the net-

work. Although methods exist for securing sensor networks

(i.e., encryption), such unauthorized access can still occur

[1]. Thus, it is important to understand how a rogue can

degrade estimation accuracy as well as how a sensor network

can mitigate its effect.

One sensor network estimation task of particular interest

is estimating the location of an emitter. We consider the prob-

lem of a rogue introducing bias into a locating network using

time difference of arrival (TDOA). We assume a rogue sensor

can inject a false report of its state (e.g. sensor position and

velocity) into an estimating network. In particular, this work

seeks the false sensor location which drives the emitter loca-

tion estimate a specified distance away from its true value.

The problem of decreasing the accuracy of localization

networks has been previously considered in [2, 3, 4]. In [2], a

bias is introduced into triangulation through a simple corrup-

tion model where the adversary arbitrarily alters a percentage

of measurements such that they vote for some other location.

In order to obtain a consensus, many measurements are re-
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quired. Alternatively in [3, 4] a single false location injec-

tion is used to decrease estimation accuracy by minimizing

the Fisher Information Matrix (FIM). Here and in [3, 4] we

assume that a single rogue sensor deceitfully pairs with one

valid sensor thereby corrupting a single sensor pair. The other

M−1 pairs each contain two valid sensors. While [4] shows

that it is possible to maximally degrade estimation accuracy

via a single injection, as will be shown in Section 3.1, mini-

mizing the FIM does not necessarily introduce a bias.

This work solves a different problem, where in order to

drive the emitter location estimate away from its true value

we minimize the LS cost of the TDOA residuals to determine

the false sensor location to be injected. The main contribu-

tions of this work are: (1) a method by which a rogue can

introduce a significant bias into the location estimate of an es-

timating network under TDOA, and (2) the bias achieved by

the rogue can be intuitively controlled through a distance pa-

rameter. Through numerical results we show that our method

is able to introduce significant bias even in the presence of

robust estimation techniques.

Section 2 discusses estimation under TDOA. Section 3

presents a new method of finding the false rogue position that

introduces significant bias. Section 4 evaluates the success of

the rogue using mean squared error (MSE) for both the non-

linear LS and more robust least median squares (LMS).

2. BACKGROUND

A collection of N sensors is used to estimate the location of

a stationary emitter located at xe. In a two-dimensional sce-

nario at least two pairs of sensors are needed under the time

difference of arrival (TDOA) method to obtain a location es-

timate. The sensors are paired apriori into M = N
2 pairs and

no two pairs share a common sensor. Each pair of sensors de-

fines a hyperbola where the foci are the sensor locations [5].

The actual TDOA of the mth sensor pair is

τm (xe) =
1

c
(||xe − xi|| − ||xe − xj ||) , (1)

where xi, xj are the locations of sensors i and j of the mth

pair, and c is the speed of light.

Each sensor pair makes their TDOA estimate, τ̂m, by

cross correlating their measured signal data. All estimated



TDOAs are sent to a single node for location processing

which is assumed here to not be the rogue sensor. The mea-

surements are corrupted by additive estimation errors

τ̂m = τm (xe) + nm m = 1, . . . ,M, (2)

where nm is the mth pair’s random TDOA measurement er-

ror. The TDOA measurements are obtained using the maxi-

mum likelihood (ML) estimator. From the asymptotic prop-

erties of the ML estimator [6], the distribution of nm is taken

as zero-mean Gaussian with variance σ2
m for m = 1, ...,M .

Using the TDOA measurements, the location estimate can

be found by minimizing the least squares (LS) cost of the

TDOA residuals given by

x̂e = arg min
x̃e

M∑

m=1

(τ̂m − τm (x̃e))
2

(3)

where x̃e is the variable of all possible emitter locations.

Due to the non-linear dependency on x̃e, the Gauss-Newton

method [6] can be used to iteratively find the LS solution.

Since non-linear LS is typically used to estimate location [5],

it is important to understand how the non-linear LS estimate

can be influenced by a rogue’s false injection.

3. IMPACT OF THE ROGUE SENSOR

In [4] we considered a rogue that seeks to maximally degrade

accuracy by choosing its false state to minimize the Fisher

Information Matrix (FIM). In this section we first show that

the rogue’s choice of false state in [4] degrades the location

to exactly the same location estimate that would be achieved

if only the M−1 non-corrupt sensor pairs are used. Thus, we

show the strategy in [4] only degrades accuracy by increasing

the variance and does not introduce any bias into the location

estimate as shown in Figure 1. We precisely determine the

impact of the solution in [4] on the non-linear LS estimate

and introduce a new method capable of introducing signifi-

cant bias into the estimate.

3.1. Interpretation of the FIM Minimizing Solution

In [3, 4] a single rogue sensor is used to inject a false state into

the network to minimize the FIM. The closed form solution

in [4] is given by

x
∗

f − xe

||x∗

f − xe||
=

xt − xe

||xt − xe||
(4)

where x
∗

f is the false state and xt is the true sensor in the

corrupt pair. The result in (4) states that the false position

lies along the vector from the emitter through the true sen-

sor. If a locating network is assumed to be able to detect

and reject erroneous TDOA measurements then care should

be taken when choosing a position on the line (4). To avoid
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Fig. 1. Impact of the rogue using the solution in [4].

detection, the sensor position that does not change the TDOA

value of the corrupted pair should be selected. This position

is at the same distance from the emitter as the actual position

of the sensor.

We now provide further insight into the impact of the

choice of false state. Namely, the solution in [4] is equiva-

lent to only using the non-corrupt pairs to perform the emitter

location. This can be seen by examining the non-linear LS

estimate update [6] given by

θ̂k+1 = θk +
(
H

T
θk
Hθk

)
−1

H
T
θk
r, (5)

where θ̂ is the unknown parameter (emitter location), the Ja-

cobian, Hθk
is the derivative of TDOA w.r.t. the emitter’s lo-

cation given that the kth estimate is correct, and r is the resid-

ual TDOA given the kth estimate. For M sensor pairs, the Ja-

cobian is (dropping the subscript) H =
[
h
T
1 ; . . . ;h

T
M−1

;hT
M

]

where hm is the derivative of TDOA of the mth pair w.r.t.

the emitter’s location and h
T
m is the mth row of H. The

product HT
H can be written as the sum of each pair’s con-



tribution, HT
H = h1h

T
1 + h2h

T
2 + · · · + hMh

T
M

, where

we assume that the last pair M contains the corrupt rogue

sensor and from [4], h
T
M

= 0̄1×2. The Jacobian becomes

H =
[
h
T
1 ; . . . ;h

T
M−1

; 0̄1×2

]
and the product HT

H becomes

H
T
H = h1h

T
1 + h2h

T
2 + · · ·+ hM−1h

T
M−1

︸ ︷︷ ︸

due to non-corrupt pairs

+0̄2×2 (6)

indicating that the non-linear LS estimate is computed using

only the non-corrupt pairs’ Jacobian submatrices. Thus, the

solution in [4] can increase the variance no more than to the

level that would occur if only the M−1 non-corrupt pairs are

used for location processing as shown in Figure 1. In many

cases this prohibits the rogue from significantly degrading the

performance, i.e., for cases where the performance with the

remaining M−1 pairs is sufficiently good. It also leaves some

random aspect to the degradation achieved - even though the

variance is larger, a particular estimate may be quite accurate.

Next we explore a new approach, which does not have this

limitation and allows for the rogue to introduce significant

bias into the location estimate.

3.2. Biasing the Location Estimate

The goal of the rogue is to drive the non-linear LS estimate

of emitter location to be r distance units away from its true

value by injecting a single false position. That is, the rogue

seeks to move the non-linear LS estimate to the position

x̂e,r (θ) = xe + r [cos (θ) sin (θ)] ,T (7)

where r is the desired offset and θ is any value in [0, 2π]
to be selected by the rogue as shown by the dashed circle in

Figure 2. Since the rogue allows the location estimate to be at

any value of θ, it must also be considered in the optimization.
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Fig. 2. Rogue desired emitter location estimate

To find the false position, the LS cost of the TDOA resid-

uals is minimized given the rogue’s desired condition in (7).

The problem can be formulated as

arg min
xf ,θ

M−1∑

m=1

(τ̄m(x̂e,r(θ))−τm)
2
+(̄τM (x̂e,r(θ),xf)−τM)

2
(8)

where τ̄m (θ) and τ̄M (θ, xf ) are the TDOA values for the

possible values of xf and θ, and τm is the true value of TDOA

of the mth pair in (1). For simplicity of notation we drop the

functional dependence of the TDOAs on x̂e,r (θ) to θ noting

that all parameters in (7) except θ are known.

The problem in (8) is non-linear and due to the rank defi-

ciency of the Jacobian matrix the Gauss-Newton method can-

not be used. The Jacobian is given by

H =






∂τ̄1(θ)
∂θ

∂τ̄1(θ)
∂xf...

...
∂τ̄M (θ,xf )

∂θ

∂τ̄M (θ,xf )
∂xf




 (9)

where
∂τ̄m(θ)
∂xf

= 0̄1×2 ∀m 6= M . The Jacobian is M×3 and is

clearly rank degenerate. To remedy this problem a change of

variables can be used where Rf = ||x̂e,r (θ) − xf ||. The LS

cost in (8) can be re-written as

arg min
Rf ,θ

M−1∑

m=1

(τ̄m (θ)− τm)
2
+ (τ̄M (θ, Rf )− τM)

2
(10)

where τ̄M (θ, Rf ) =
1
c
[||x̂e,r (θ)− xt||−Rf ]. By minimiz-

ing the LS cost the rogue can reduce its detectability. If the

rogue’s false state significantly increases the LS sum beyond

expected then its presence can be detected. As such, the rogue

seeks to ensure this sum of squares is minimized while still

driving the estimate away from its true value. The set of false

positions which minimize the LS cost (10) is described by a

circle with center x̂e r (θ) |θ=θ∗ and radius R∗

f as shown in

Figure 2. As a result, any point on this circle reported to the

locating network’s non-linear LS algorithm is a solution for

the rogue’s false position.

The solution of (10) is found by evaluating over a fine

grid, although it is expected that this could be solved using

other methods such as gradient-based methods, or using par-

ticle swarm optimization techniques.

4. EVALUATING THE FALSE INJECTION

We assume that the rogue selects the false sensor location

to inject as in Section 3 and then reports the location to

the estimating network. Our method is evaluated for an es-

timating network that uses both traditional non-linear LS

and robust LS techniques to obtain its final location esti-

mates x̂e,LS and x̂e,LMS. Recall, the LS estimate is given by

x̂e = arg min
x̃e

∑M
m=1 (τ̂m − τm (x̃e))

2
, and can be solved

iteratively using Gauss Newton.

It is well known that LS estimation is susceptible to out-

liers. A natural consideration is the use of robust statistical

techniques [7] to remove the sensitivity to outliers. To this

end, it is important to also evaluate the impact of our ap-

proach when robust statistical methods are used. Specifically,

we evaluate our method against least median squares (LMS).
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Fig. 3. Mean squared error performance for non-linear LS and LMS.

The performance of LMS has been shown in [8]. Al-

though no closed form exists for LMS, [9] provides an ef-

ficient method. There are two main steps, (1) clustering the

measurements into subsets to obtain a set of weights, and (2)

reweighting the measurements and solving for the final esti-

mate using weighted LS.

Given X total measurements, K subsets are randomly

chosen, each with n samples. For each subset j an estimate

θ̂j is found and the squared residuals r2ij for each estimate is

determined across all X measurements . The cluster with the

smallest median of the squared residuals is used to determine

the weights for each measurement,

wi =

{
1 | ri

so
| ≤ γ

0 otherwise
(11)

where so = 1.48826

(

1 +
5

X−P

)

√

medir
2

i

(

θ̂

)

, P is the dimen-

sion of the unknown parameter, and γ is a threshold chosen

as in [9]. Given these weights, weighted LS is then used to

find the final location estimate.

The effectiveness of our approach in biasing the location

estimate is evaluated as a function of MSE and the rogue

desired offset. We consider 2000 sensor-emitter geometries

randomly generated in a 1000m×1000m field for ten sensor

pairs.

Figure 3 shows the MSE of the estimate in the presence

of false injection under non-linear LS and LMS for varying

SNR. The baseline MSE without injection is shown for com-

parison. We observe that our method is able to successfully

bias the location estimate across varying distances and SNR

for both LS and LMS. For higher SNR, LMS gives a smaller

error than compared with LS as expected. For lower SNR

and small distance offsets LS gives a smaller error, while for

larger distances LMS gives a smaller error which is to be ex-

pected [2]. For LS, increasing the distance offset increases

the MSE while for LMS the MSE still increases but levels out

quickly with larger distances.

5. CONCLUSION

In this work, we consider the problem of a rogue sensor that

seeks to drive the emitter location estimate away from its true

value. In order to more seriously degrade performance, the

LS cost is minimized given the condition of the rogue’s de-

sired offset. Our method introduces significant bias into the

estimate for a network employing non-linear LS and even

when robust estimation methods such as LMS are used.
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