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ABSTRACT 
 
By its very nature DSP is a mathematically heavy topic and 
to fully understand it students need to understand the 
mathematical developments underlying DSP topics.  
However, relying solely on mathematical developments 
often clouds the true nature of the foundation of a result. It 
is likely that students who master the mathematics may still 
not truly grasp the key ideas of a topic.  Furthermore, 
teaching DSP topics by merely “going through the 
mathematics” deprives students of learning the art of 
discovery that will make them good researchers.  This paper 
uses the topic of polyphase decimation and interpolation to 
illustrate how it is possible to maintain rigor yet teach using 
less mathematical approaches that show students how 
researchers think when developing new ideas.    
 

Index Terms— DSP education, discovery, polyphase 
filters, decimation and interpolation  
 

1. INTRODUCTION 
 
Teaching DSP necessarily requires heavy use of 
mathematics – the nature of the material requires 
mathematics to precisely specify the methods and firmly 
establish their characteristics and performance.  
Furthermore, mathematics enables efficient descriptions that 
help authors provide precise details despite length 
constraints imposed by book and journal editors.  Thus, it is 
not surprising that DSP educators rely heavily on using 
mathematics when teaching DSP – and perhaps too often 
our use of mathematics, although precise, fails to convey the 
true essence of the topics.  Nonetheless, our students 
persevere and learn the material – but likely in the process 
fail to learn the art of discovery needed to become creative 
DSP researchers.  DSP educators should strive to present 
material in ways that simultaneously demonstrate the art of 
discovery in DSP and present the mathematical results and 
insights the students need to learn. 

The back cover of one of Richard Hamming’s books 
[1] states that the book is “…intended to instill in the reader 
a style of thinking that will enhance his ability to function as 
a problem solver of complex technical issues…”  The book 

describes DSP-related developments and “…relates how 
those discoveries came about, and most importantly, 
provides analysis about the thought processes and reasoning 
that took place…” [1].  Another example in the literature 
that shows the thought process that lies behind something 
that is otherwise developed mathematically is a description 
of how the Hough transform was invented [2]; in fact that 
paper is part of the ongoing “DSP History Column” in the 
IEEE Signal Processing Magazine, which has focused at 
least partly on how DSP results were discovered.  Likewise, 
here we take a specific DSP idea (i.e., polyphase filters) that 
ordinarily is presented solely in terms of mathematical 
developments and instead develop it from a more intuitive 
point of view.  This approach allows students to see an 
example of the thought process used in DSP research – 
namely that innovation (even in math-heavy areas) more 
often flows from non-mathematical visualization/intuition 
than from blindly manipulating equations.  Furthermore, 
this particular development of polyphase filters provides 
students with a clearer view of exactly what polyphase 
filters are and how they work – then going through the 
mathematical development will make more sense. 

For conciseness in this paper we will focus only on FIR 
polyphase filters for decimation and interpolation by an 
integer factor.  This is sufficient to show discovery in action 
and to show that polyphase filters are essentially a re-
configuration that allows convenient computing.  We close 
the paper with some general comments about teaching 
discovery techniques in DSP classes. 
 

2. STANDARD PRESENTATION OF POLYPHASE 
 
General DSP books (e.g., [3],[4]) and multirate DSP books 
(e.g., [5]-[7]) generally develop decimation polyphase filters 
as follows. First, the idea of filter-then-decimate is 
introduced.  Namely, the signal to be decimated, x[n], is first 
filtered by a filter with impulse response h[n] to give the 
intermediate signal v[n] given by  
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i

v n x i h n i   (1) 

and then that filtered signal is decimated by an integer factor 
M to give the lower rate signal y[n] as 
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which is simply (1) with n replaced by nM, to enact the 
decimation. In such developments it is then pointed out that 
although this structure accomplishes the desired goal it is 
computationally inefficient.  

Up to here the development is intuitive and instructive. 
However, at this point the polyphase structure is then 
developed one of two ways, neither of which provides much 
insight or understanding – even when fully understood.  The 
first way is a time-domain development that uses a non-
obvious re-indexing of the summation in (2) given by  
  
 , with , 0,1, , 1,i i M m i m M        (3) 

which, after some mathematical manipulation of double 
summations, leads to the desired polyphase filter structure.  
The second way is a z-domain development that starts by 
first demonstrating that the filter transfer function can be re-
organized into a sum of the polyphase component transfer 
functions, as given by 
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completed by multiplying this form of H(z) by X(z), 
applying the z-domain result for decimation, and finally 
exploiting the noble identities (also called the multirate 
identities) to move the decimation to the front of the 
resulting system. 

Both of these developments lead to the same polyphase 
structure but neither gives much insight into what is really 
going on nor what the resulting structure really does.  This 
leaves students with a shallow understanding of the real 
essence of polyphase filters and likely unprepared to apply 
them in any new developments of their own. Furthermore, it 
gives the student no insight into how the development was 
conceived or discovered.  In the first development, the 
introduction of the re-indexing in (3) seems to “come out of 
nowhere” and leaves many fundamental questions 
unanswered.  Why is this re-indexing used?  How did those 
who first developed these ideas ever come up with such an 
idea?  In the second development, the expansion in (4) also 
seems to “come out of nowhere” and the need to apply the 
noble identities further shrouds what is really going on.  
Furthermore, the application of the noble identities leads to 
(imprecise) statements that “the decimation is now being 
done before the filtering,” which seems contradictory to 
what they learned first (i.e., filter-then-decimate, as in (2)).   

Each approach hides from students what is really going 
on and gives them the impression that to become DSP 
innovators they must learn to pull such confounding steps 
“out of thin air.”  Perhaps even worse, the resulting 
structure is touted as an efficient implementation, yet the 
development gives no insight into where that efficiency 

comes from (except perhaps that the parallel paths that 
result admit the potential for parallel implementation, but 
that is only part of the story).  Alternatively, it is desirable to 
find a development that (i) flows transparently from (2) to 
the final polyphase structure, (ii) clearly shows where the 
efficiency in the structure really comes from, and (iii) 
illustrates how researchers think conceptually/intuitively to 
arrive at precise mathematically results.  Point (iii), 
obviously, applies to topics beyond the specific coverage of 
polyphase filters and should be done more in DSP textbooks 
and class notes.   By showing how (iii) can be accomplished 
for the topic of polyphase filters, hopefully this paper will 
motivate ways to address point (iii) for other topics.  Some 
discussion of this is given in the last section of the paper. 
 

3. DISCOVERY OF POLYPHASE FILTERS 
 
When DSP researchers seek to discover new ideas it is 
common to use visual methods rather than just using 
mathematics.  This is clear when glancing at researchers’ 
office whiteboards.  For the topic at hand we can start by 
going back to the inefficient method shown in (2) and 
visualizing what it says; Figure 1 shows such a 
visualization.  Along the top are the samples of the signal x 
indexed by i as in (1) and (2).  Under that are the various 
flipped and shifted versions of the impulse response 
(labeled along the left side with the appropriate h[n – i]); the 
arrows on the right indicate the act of assigning the results 
of multiplying that row’s shifted-flipped impulse response 
by the x[i] above and summing to create the corresponding 
v[n].  Note that all the possible shifts are shown for n = 6 to 
11. That is, the figure even shows the shifts in (1) that are 
ultimately thrown away in (2), which are the ones that have 
their corresponding v[n] crossed out. 

The key insight here (and one that is obvious) is that for 
efficiency one should not compute the samples that are to be 
thrown away by the decimation.  And that is all that is 
needed to discover the fundamental insight needed to derive 
polyphase filters!  The top part of Figure 2 retains only 
those outputs that are kept by the decimation; to aid in 
visualization we have used color-coded symbols for the 
samples of the impulse response rather than the math 
symbols used in Figure 1.  Now notice that we could 
implement this simply by revising our view of convolution: 
rather than shifting the flipped impulse response ahead by 1 
prior to computing each output we now shift it ahead by M 
each time.  This is an efficient way to compute the filter and 
decimate; but, it is not desirable from an implementation 
point of view: we can’t use standard software code for 
convolution nor could we use standard hardware blocks for 
convolution, because they use single-step shifting for 
convolution.  Furthermore, this shift-by-M convolution view 
is not easily applicable to the implementation of recursive 
filters for decimation. 
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Figure 1: Inefficient form of filter-then-decimate.  
Illustrated for the case of decimation factor M = 3. 
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Figure 2: Efficient structure from Figure 1 obtained by 
eliminating outputs that are discarded by decimation. 

But this viewpoint makes it clear that there is a definite 
structure in Figure 2 that can be exploited.  Looking 
carefully (what good researchers do when exploring to find 
new results) we see that the purple symbols (trapezoid and 
square) only interact with signal samples that have an index 
that is a multiple of 3; Thus we see that the purple symbols 
taken together as a two-point impulse response are 
convolved in a standard way (i.e., requiring shifts of 1 
sample) with the sequence of input samples having an index 
that is a multiple of 3.  Similar relationships can be observed 
for the yellow symbols (circle and cross) and the red 
symbols (heart and triangle). This view is highlighted by the 
rounded rectangular shapes. It leads to the polyphase 
structure shown in Figure 3, where the input signal gets 
“dealt” into M sub-signals and the filter impulse response 
gets split into M sub-filters – and most importantly each 
sub-signal is input to each sub-filter for standard 
convolution (i.e., requiring only single-step shifting).  Thus, 
this structure can be easily implemented using standard 
software/hardware building blocks and furthermore the sub-
structures have potential to be extended to more general 
cases. 

Thus, without the use of any precise-yet-obfuscating 
mathematics it is possible to precisely develop the basis of 
polyphase filters.  The important thing here is that the 
development shows that the result is not a complicated 
mathematical development but rather just a re-grouping of 
the structure of the inefficient filter-then-decimate 
viewpoint shown in Figure 1 into the efficient polyphase 
form shown in Figure 3. 

Once this simple re-structuring provides the key idea 
behind polyphase decimation for the FIR case it is possible 
to (i) derive the result using the time-domain re-indexing 
approach and the z-domain polyphase decomposition/noble 
identities approach and (ii) extend the idea to IIR polyphase 
ideas.  Doing such derivations after seeing this development 
will make it more obvious to the student why such a re-
indexing or filter decomposition is used. 
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Figure 3: The resulting polyphase decimation structure 
obtained by re-interpreting the structure in Figure 2. 

 
Of course it is possible to develop polyphase 

interpolation structures using similar approaches.  There the 
insight comes from the fact that the effect of the inserted 
zeros on the convolution can be exploited by re-grouping 
the structure.  Figure 4 shows the signal [ ]x i , which is the 
input signal with inserted zeros, as it is filtered using the 
impulse response h[n].  The tall dashed rectangles show the 
multiplications that need not be performed.  The solid-filled 
symbols of the impulse response need to be multiplied and 
the large solid-lined rounded rectangles collect those into 
groups that all operate on the same subset of input samples.   
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Figure 4: Inefficient form of zero-stuff-then-filter form 
of interpolation. 

The result of eliminating from Figure 4 the operations 
that involve only the inserted zeros is shown in Figure 5, 
where it is clear that the original signal (i.e., without 
inserted zeros) gets filtered with M different sub-filters to 
create M successive output samples and then get shifted 
ahead to the next non-zero sample.  Figure 5 is precisely the 
structure of FIR polyphase interpolation, and again we see 
the same sub-filter structure (the polyphase filters) come 



into play – although in a slightly different way.  It now 
makes sense to derive the results mathematically and it will 
be obvious why the mathematical steps are taken. 
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Figure 5: The resulting polyphase interpolation 
structure obtained from Figure 4. 

 
4. TEACHING DISCOVERY IN DSP 

 
In order to extend to other DSP topics the ideas of teaching 
discovery that have been illustrated above, we need to 
identify what characteristics in the above descriptions are 
general approaches that can be carried over.  Looking back 
at how the discovery of polyphase filters was made in 
Section 3 we see that there were three main components:  

1. Visualize the problem 
o Block Diagrams 
o Sketches of simple plots of functions, etc. 

2. Start with small examples 
3. Look for patterns and familiar structures 

 

Equation (2) was visualized for a small example using block 
diagrams and signal sketches.  Then the familiar pattern of 
individual convolutions was discovered. 

Although not present in the polyphase filter discovery 
given above, there are other components that can be useful 
for discovery.  A few of them are: 

4. Start with simplified assumptions then remove 
them 

o For example, in developing uniform DFT 
filter banks first assume that the filter 
length is the same as the number of 
channels [8] 

5. Use analogies to relate new ideas to topics already 
covered 

o For example, in developing the idea of I 
& Q signals it is useful to first explore the 
idea using the familiar concept of phasors 
[8] 

6. Divide and conquer 
o For example, deriving the FFT algorithm 

is often done using this approach. 
 

Here are some other DSP topics that can be used as vehicles 
for teaching the art of discovery. 

Uniform DFT Filter Banks [8]:  This uses components 
1 – 4 by visualizing a small example under the simplified 
assumption that the filter length equals the number of 

channels and that there is no decimation.  Once this scenario 
is understood through visualization, the mathematical view 
is extracted and it is possible (through continued 
visualization) to successively remove assumptions to 
discover the uniform DFT filter bank with decimation and 
filter length not equal to the number of channels. 

Bandpass Sampling [8]: This uses components 1 – 4 by 
visualizing a small example under the simplified assumption 
that the upper band edge is an integer multiple of the 
signal’s bandwidth.  Then, as understanding is gained, the 
discovery progresses to the general case of an upper band 
edge that is not an integer multiple of the bandwidth. 

DFT & FT Results:  An example is the proof of  
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The proof is commonly available in DSP books (e.g., [4]) 
but, again, students may wonder how one discovers such 
results (it is easy to prove, but may be elusive to discover).  
However, visualizing this as the sum of vectors in the 
complex plane helps with the discovery: when k = 0 all N 
vectors in the sum line up on the positive real axis and 
therefore sum to N, but for the other values of k you get N 
vectors that are uniformly spaced in angle and thus sum to 
0.  Visualization together with looking for patterns in small 
examples leads to this discovery. 
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