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Abstract—We consider a sensor network, which in the presence
of a rogue sensor, is tasked with estimating emitter location
under the time difference of arrival (TDOA) method. The rogue
seeks to maximally degrade estimation accuracy by injecting a
single false report of sensor position. Our closed form solution
gives a set of false positions that minimize the network’s Fisher
Information Matrix (FIM). We find that the rogue sensor should
report a false position along the vector pointing from the emitter
to its valid paired sensor. Further, a method for finding the false
location that not only minimizes the FIM but is also robust to the
location network’s ability to detect and reject erroneous TDOA
measurements is developed.

Index Terms—Emitter Location, Time Difference of Arrival
(TDOA), Fisher Information, False Data, Information Injection

I. I NTRODUCTION

One sensor network estimation task of particular interest is
estimating the location of an emitter. Since sensor networks
communicate using a shared wireless medium it is possible
for a rogue sensor to infiltrate the network and thus influence
estimation accuracy. This work considers the problem of a
rogue sensor injecting a single false position into a network
tasked with estimating the location of an emitter. Although
methods exist for securing sensor networks i.e. encryption,
such unauthorized access can still occur [1].

A common method for locating an emitter is the time
and frequency difference of arrival (TDOA/FDOA) method
[2], [3], where the estimation accuracy is assessed using the
Fisher Information Matrix (FIM) [4]. A number of applications
using TDOA/FDOA and the FIM have been considered such
as sensor pairings [5], fault tolerant vehicle guidance [6],
and bit allocation [7]. Recently, the problem of a rogue
sensor infiltrating an emitter location network has also been
investigated in [8]. However, due to the complexity of the FIM
under TDOA/FDOA, previous approaches [5]–[8] have relied
on numerical methods which lack an analytic solution.

In this work we focus on the TDOA method as a natural
starting point towards the development of an analytic solution
for the rogue sensor problem. Under the TDOA method,
sensors are typically paired and each pair generates its own
TDOA estimate. These estimates are then combined to form
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an estimate of the emitter’s location. In this scenario, we
assume that a rogue sensor corrupts a single pair of sensors
by pairing with a valid sensor. Further, we assume that the
rogue knows the location of the emitter and the positions of
the other valid sensors in the network. This is reasonable as
this information is generally shared within a network for use
in location processing.

The main contributions of this work are:

1) A closed form solution for the problem of a rogue
injecting a single false location into a network tasked
with estimating an emitter’s location under TDOA.

2) A method for finding the false sensor position that not
only minimizes the FIM but is also robust to the location
network’s ability to detect and reject erroneous TDOA
measurements.

This is significant because previous work lacks an analytic
solution for the rogue problem.

II. BACKGROUND

In order to assess location accuracy, the Fisher Information
Matrix (FIM) [4] is used as the distortion criteria. Let̂s =
s (θ) + n represent the received noisy vector comprised of
a deterministic signal vectors (θ) parameterized by vectorθ
and corrupted by Gaussian noisen, with covariance matrixC.
The FIM is given by

J (θ) =
∂sT (θ)

∂ (θ)
C

−1 ∂s (θ)

∂ (θ)
(1)

where ∂s(θ)
∂(θ) , H is the Jacobian matrix,θ is the emitter’s

location, ands (θ) is a vector of the true TDOAs at the
receivers.

A collection of N sensors is used to locate a stationary
emitter,u. A two-dimensional scenario is considered where
at least two pairs of sensors are needed under TDOA. The
sensors are paired apriori intoM = N

2 pairs and no pair
shares a common sensor. The actual TDOA of themth sensor
pair is

τm =
1

c
(||xi − u|| − ||xj − u||) (2)



wherexi, xj are the locations of sensorsi andj, andc is the
speed of light.

Each sensor pair makes their TDOA estimate,τ̂m from
cross correlating their measured signal data [2]. All estimated
TDOAs are sent to a single node for location processing. The
measurements are corrupted by additive estimation errors

τ̂m = τm + nm m = 1, . . . ,M (3)

wherenm is themth pair’s random TDOA measurement error.
The TDOA measurements are obtained using the maximum
likelihood (ML) estimator [2]. From the asymptotic properties
of the ML estimator [4], the distribution ofnm is taken as
zero-mean Gaussian with varianceσ2

m for m = 1, ...,M .
Under TDOA, the Jacobian is the derivative of the TDOA

with respect to the emitter’s location and is given by

H =







∂
∂u

(τ1)
...

∂
∂u

(τM )






(4)

where the derivative of themth pair’s TDOA is

∂ (τm)

∂u
= −

1

c

[

xi − u

||xi − u||
−

xj − u

||xj − u||

]

. (5)

An error ellipse interpretation of the FIM can be used which
shows how the location error is oriented in the x-y plane [9].
The eigenvectors of the FIM dictate the major and minor axes
of the error ellipse and the reciprocal square roots of the
eigenvalues dictate the lengths of the axes. Figure 1 shows
the error ellipse and is used as an illustrative case throughout
the paper.
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Fig. 1. System setup for a two pair network. Sensors 1 & 2 and 3 &4 are
paired as shown in green. The error ellipse using the TDOA method is shown
in blue forσTDOA = 17.4 ns.

III. FALSE LOCATION INJECTION

The presence of a rogue sensor is considered, whose goal
is to degrade the estimation accuracy of a network estimating
emitter location as described in Section II. The rogue sensor
has the ability to inject a single false report of a sensor’s
state, which in this paper is the sensor’s location. The single
false sensor position,xf is sought that minimizes the locating
network’s FIM and is given by

arg min
xf

det
(

H
T
C

−1
H
)

(6)

whereH is a function of the false location,xf as in (4)-(5).
The FIM is positive semidefinite [4]. We assume a means for
injecting a false position exists. The rogue pairs with another
valid sensor thereby corrupting a single sensor pair in the
network. It is assumed that the first pair is corrupted by the
rogue and is composed of the rogue sensor reporting a false
position,xf and a valid sensor reporting its true position,xt.

The FIM can be expressed as the linear combination of each
pair’s contribution to the FIM,

H
T
C

−1
H =

[

h11 h21

h12 h22

]

[

1
σ2

1

0

0 1
σ2

2

]

[

h11 h12

h21 h22

]

(7)

=
1

σ2
1

h1h
T
1 +

1

σ2
2

h2h
T
2 (8)

where h
T
1 = [h11 h12] and h

T
2 = [h21 h22] are the

derivatives of TDOA w.r.t emitter location of the corrupt
and non-corrupt pairs, respectively. Each submatrixhmh

T
m is

pair m’s contribution to the Fisher Information Matrix. The
variance of TDOA for the corrupt and non-corrupt pairs are
given byσ2

1 andσ2
2 , respectively.

For convenience, we letA = 1
σ2

2

h2h
T
2 since the non-

corrupt pair is not a function of the false position. Further,
by introducing a new variable,Y = h1h

T
1 , gives

H
T
C

−1
H =

1

σ2
1

Y +A (9)

whereY is the outer product of the derivative of the corrupt
pair’s TDOA. Although (9) is shown for two sensor pairs, the
above holds for additional non-corrupt pairs, whereA reflects
the contribution of the additional pairs.

From the construction ofY, the diagonal entries ofY are≥
0 and is at most rank one. The problem (6) seeks to minimize
the determinant of the FIM. The matrixA is rank one, which
implies the sum in (9) is at least rank one. Since the Rank(Y+
A) ≤ Rank(Y) + Rank(A), there are two possibilities forY.
If Y has rank one, the only way the rank(Y+A) is one is if
the row and column spaces ofY andA are dependent. If these
two matrices are dependent, then this implies that both sensor
pairs give the same contribution to the FIM. This can happen
if the unit vectors pointing from the emitter to the sensors in
both pairs are equal, i.e. the sensors lie along the same vector.
Since the rogue can only move one sensor position inh1,
this is not a viable geometry as it would require the location
network to have positioned a sensor from each pair along the



same line from the emitter, resulting in a poor geometry for
location. Otherwise given any arbitrary geometry it may not
be possible to ensure there is a solution such that the matrixY

is rank one and the Rank(Y+A) is also rank one. However,
if Y has rank zero, this restriction is not imposed. Thus,Y

is constrained to be rank zero which requiresY ≥ 0.
Since the log(·) is monotonically increasing in its argument,

substituting (9) gives

arg min
Y

log

(

det

(

1

σ2
1

Y +A

))

(10)

s.t. Y ≥ 0 (11)

which is a concave minimization problem whereσ2
1 and A

are known constants.
The objective function is linearized using the Taylor Series

Expansion aboutYk,

log
(

det
(

1
σ2

1

Y+A

))

≈ log
(

det
(

1
σ2

1

Yk+A

))

+tr{Bk ·[Y−Yk]} (12)

whereBk =

(

1
σ2

1

(

1
σ2

1

Yk +A

)

−1
)

. The constants in (12) can

be ignored since they do not affect the minimization. We have
a sequence of semidefinite programs (SDP)s

Y(k+1) = arg min
Y

tr {BkY} (13)

which are each convex [10]. A similar linearization procedure
is used for the rank minimization problem [11], whereY0 = I.
Due to the non-negative constraint, (13) converges in one step
using [12] to the optimal valueY∗ = 0. Thus, we need only
solve

arg min
Y

tr {BkY} (14)

s.t. Y ≥ 0 (15)

which is a semidefinite program in variableY.
SinceY∗ = 0 it follows that the derivative of the TDOA,

h
∗

1 = 0 as in (5). Sinceh1 is not a one-to-one function of
xf , multiples values ofx∗

f exist which yield the same value
of Y∗. Nonetheless, we obtain a closed form solution for the
false location,

x
∗

f − u

||x∗

f − u||
=

xt − u

||xt − u||
. (16)

The solution in (16) dictates the unit vector pointing from
the emitteru, to the valid true sensorxt, should equal the
unit vector pointing from the emitter to the rogue corrupted
sensorxf . Therefore, any position along the vector through
xt maximally degrades estimation accuracy. Figure 2 shows a
numerical example, where sensor 1 is injected with a false
position. The positions which minimize the det(FIM) are
marked with an “x”.
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Fig. 2. Evaluation of the determinant of the FIM for the geometry in Figure
1 at a 0.2 meters interval over a 200m x 200m grid. Sensor 1 is injected with
a false position. The solution set of false locations are marked with an “x”.

IV. D ETECTING AND REJECTING ERRONEOUSTDOA
MEASUREMENTS

Thus far it is assumed that the locating network is unaware
of the rogue sensor. Next, we consider the scenario where
the locating network is aware of the rogue and of the rogue’s
ability to corrupt one of its TDOA measurements.

We consider the case where the location network has the
ability to validate each senor pair’s measurement by comparing
the measured TDOA with the expected TDOA. Upon detec-
tion of an inconsistent TDOA measurement, the erroneous
measurement is ignored by the network. We assume that the
locating network has more than the minimum number of pairs
needed for location. If not, rejection of one of the erroneous
TDOA measurements would leave only one usable TDOA
measurement to perform emitter location, as a minimum of
two TDOAs are required. In order to ensure that the rogue’s
injection is not rendered useless, the TDOA measurement from
the corrupted pair must not be discarded.

A. Ensuring Valid TDOA Measurements

It is in the rogue’s interest to choose a false location that
results in a TDOA measurement that is equal to the expected
TDOA. We observe that any position at the same distance from
the emitter as the sensor’s true location does not change the
value of TDOA. Figure 3 shows a numerical example where
any position along the dashed circle gives the same value of
TDOA as if the sensor was reporting its true position.

While the rogue wants to ensure its injection is not detected,
its objective is still to maximally degrade estimation accuracy.
Since the FIM is composed of the TDOA derivatives, sensor
positions with the same TDOA value can have different values
of Fisher Information. Using the solution in (16), we choose
the location along the vector at the same distance from the
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Fig. 3. Evaluation of the TDOA for grid locations. The dashedcircle
corresponds to the locations that do not change the TDOA. Thefalse positions
which satisfy (16) are marked with an “x”.

emitter as the sensor’s true location. Figure 3 shows the setof
locations that do not change the TDOA by the dashed circle
and the locations that minimize the FIM determined from (16)
are marked with an “x”. The intersection of the circle and line
is the position that not only minimizes the FIM but also gives
a TDOA as if the sensor was reporting its true position.

The error ellipse interpretation of the FIM is revisited. The
error ellipses with and without injection of a false position
are compared. Using the false location solution in (16), the
corresponding error ellipse is plotted in red in Figure 4. The
error ellipse without the rogue sensor is plotted in blue. Itis
observed that the accuracy has been degraded such that the
network cannot locate the emitter.

V. CONCLUSION

This work investigates the problem of a rogue sensor able
to inject a single false sensor position into a network tasked
with estimating an emitter’s location under the time difference
of arrival method. We find a closed form solution which
states that the false senor locations that minimize the Fisher
Information Matrix lie along the vector pointing from the
emitter through the valid sensor in the rogue corrupted pair.
Using this result, we present a method for finding the false
sensor locations that not only minimize the FIM but also
ensures that the resulting TDOA measurement is utilized by
the locating network.
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