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Abstract—When trying to estimate the location of a non-
cooperative non-coherent emitter using intercepted signal
measurements from a single airborne platform, the doppler-
based techniques, such as theFrequency of Arrival (FOA) is
not applicable. In this paper, we propose a single platform
long baseline interferometry (LBI) based emitter location
estimator which achieves optimal estimation accuracy on
average without any prior information such as a rough
emitter location estimate or a reference point. The novelty
of the proposed approach is that it tackles the “phase
wrapping” problem inherited in the LBI by exploring the
spatial diversity and requiring the platform to fly along a
spiral-shaped trajectory. We demonstrate that an arbitrary
platform trajectory can be evaluated in terms of the ability
of getting accurate estimation using an entropy-based
diversity measure. The robustness of the proposed scheme is
also explored. This work intends to provide a different angle
for single platform emitter location estimation accuracy
improvements.

I. L ONG BASELINE INTERFEROMETRY

Emitter location estimation based on the long baseline
interferometry (LBI) is a classical technique for finding
geolocation of a non-cooperative emitter. A LBI based
location estimator calculates phase difference measure-
ments between the received signals from two anten-
nas(apertures) that have been spatially separated on a
single platform. The calculated phase differences are
then used as data measurements to further estimate the
location of the emitter using a Least Squares estimator.

In LBI terminology, the platform that performs the
estimation task is called the “baseline”; the baseline
length, denoted asL, is the distance between two an-
tennas(apertures) on the platform and “long baseline”
refers to the case where the two antennas are placed at
a distance greater than half of the signal wavelengthλ,
i.e., L ≥ λ/2. On the contrary, in the short baseline
interferometry (SBI) scenario, two antennas are placed
at a distance less thanλ/2.

Unlike other single platform methods such as the
Frequency of Arrival (FOA), LBI does not require the
emitting signal to have certain frequency and/or timing

coherency which makes LBI more widely applicable.
However, LBI based methods are generally less accurate
because they suffer from the “phase wrapping” effect.

From the classical signal processing knowledge, if two
antennas are more than half wavelength apart, ambiguity
in the phase difference measurements will be introduced
due to the cyclic nature of phase measurements. Higher
the emitting signal frequency, severer the ambiguity
becomes. Lots of research efforts [1]–[11] focused on
removing the ambiguities in order to improve the esti-
mation accuracy of LBI based emitter location methods.
Among other ambiguity resolving methods, [4] proposed
a self-resolving technique which relies on a grid search
over a cost surface followed by an iterative least squares
convergence over the local neighborhood of the selected
trial grid point. However, the granularity of the grid
search satisfying the unimodal assumption on the cost
surface was not studied in [4]. Moreoever, as will be
shown below, LBI cost surfaces are often characterized
by a slim ridge over which the surface is extremely mul-
timodal. Simple grid searching over the entire solution
space might not be able to provide adequate estimation
accuracy and requires extensive computational overload
at the same time.

II. ESTIMATION ACCURACY FROM THE PLATFORM

TRAJECTORYPOINT OF V IEW

It has been shown in [12] that relative geometry
between the emitter and the platform greatly affects
the Cramér-Rao bound of an emitter location estimator.
Previous research also demonstrated that in many emitter
location estimators the flying trajectory of the platform
has a crucial impact on the final estimation accuracy.
A trajectory which maximizes the time portion when
the platform flies perpendicular to the emitter is most
likely to lead to optimal estimate in terms of estimation
accuracy. However in practical cases, due to the lack
of apriori information about the true emitter location,
estimation accuracy suffers dramatic fluctuations as the



true emitter location varies. Certain trajectory may tri-
umph when the emitter lies in certain spatial area while
performs poorly or even shows inability to estimate when
the emitter is located somewhere else. Hence in situations
when prior information about the true emitter location is
not provided, online trajectory design is impossible in
general. A reasonable question to ask instead is, would
it be possible to design a universally optimal platform
trajectory which maximizes the estimation performance
on average without any prior information of the true
emitter location?

In order to study the connection between trajectory
pattern and estimation accuracy, we use an entropy-based
diversity measure to capture the degree of trajectory
angular variation which is proportional to the trajectory’s
ability to obtain accurate estimation on average without
prior information about the emitter location. We found
out that a universal optimal trajectory which on average
maximize the accuracy of the location estimate is an
Archimedes spiral one.

A. Entropy-Based Angular Diversity Measure

The angle of arrival (AoA) of the emitting signal to
the platform alone significantly influences the estimation
accuracy of the emitter location estimation. Therefore
it is heuristically desirable for the designed trajectory
to have high angular diversity, i.e. the platform should
follow a trajectory which thoroughly explore its spatial
neighborhood in order to obtain accurate estimation.

The angular diversity of a trajectory is defined in the
form of the entropy of a discrete random variable:

Da = −
∑

i

pi
θ log pi

θ (1)

where360 degree is sliced intos angular intervals and
pi

θ, i = 1, 2, · · · , s is the probability mass evaluated as
the number of occurrences in theith interval divided by
the total number of measurements of the angle of arrival
θ. For a large set of AoA measurements, the angular
diversity characterizes the spatial variation of a trajectory.
The maximum diversity is achieved when the trajectory
demonstrates uniform angular histogram, i.e.p1

θ = p2

θ =
· · · = ps

θ in which case a trajectory maximizes the portion
flying perpendicular to the target bearing.

B. Spiral Shaped Trajectory

We claimed above that a trajectory with high angular
diversity tends to do a better job in finding accurate
location estimates, the goal is to find such trajectories
which maximize the angular diversity defined in (1). Ob-
viously to achieve maximum evenness in the histogram
of the angle of arrival to the emitting signal, the trajectory

must be self-revolving in nature. The circular trajectory
however introduces spatial redundancy after the platform
flies a close loop and therefore phase difference data
collected thereafter becomes redundant and does not
contribute to further estimation accuracy improvement.

A trajectory shape which combines evenness in angu-
lar distribution and non-overlapping path is the spiral.
Circular in nature, every point on a spiral is getting pro-
gressively further away as it revolves around the origin.
A particular category of spirals called the Archimedean
Spirals are spirals defined in polar form as follows [13],

r = aθ1/n (2)

wherea is a constant that determines the spatial separa-
tion between loops,r is the radial distance,θ is the polar
angle andn is a constant that determines the tightness in
shape of the spiral. A particular type of the Archimedean
spiral with n = 1 is called the Archimedes’ Spiral.
[14] proposed the idea of eliminating the systematic
bias in direction finding estimations by a particularly
designed trajectory which after theoretical derivation is
a logarithmic spiral, but the paper did not address the
spiral’s impact on overall estimation accuracy. To the best
of our knowledge, estimation performance improvement
in LBI based emitter location from the aspect of the
optimality of the trajectory has not been explored in the
literature so far.

The proposed spiral trajectory reduces the amount of
redundancy by attaining more spatial diversity, and at the
same time, approximately achieves the uniformness in
the angular distribution, thus it preserves the optimalityin
terms of the angular diversity. Therefore, the spiral based
trajectory isoptimal on averagebecause it maximizes
the angular diversity defined in (1) thus maximizes the
time portion when the trajectory is perpendicular to the
bearing angle.

III. PERFORMANCEEVALUATION

We demonstrate the performance improvements by
applying the spiral shaped trajectory compared to three
other widely researched counterparts:

1) Sinusoidal Wiggling;
2) Constant Acceleration Turn and
3) Constant Velocity.
In the sinusoidal wiggling case, the platform is de-

signed to fly sinusoidally along the horizontal axis in
the 2-D plane with the maximum vertical acceleration
Amax = 3g where g = 9.8m/s2. In the case of
constant acceleration turn, the platform performs a turn
with constant accelerationA = 3g. And in constant
velocity case, the platform flies along the horizontal axis
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Fig. 1. Four Types of Platform Trajectories

with constant speedv = 50m/s, A = 0. Illustrations
of the four types of trajectory are shown in Fig. 1. To
make the comparisons reasonable, the time duration and
trajectory length are same in all 4 scenarios.

A. Angular Diversity Comparisons

We use the entropy-based measure defined in (1) to
calculate the angular diversity. Without loss of generality,
we assume an arbitraryfar field position as the true
location of the emitter and then calculate the angle
α between the current platform position and a certain
point in the coordinate system, commonly the origin, at
each trajectory point. By dividing the interval(0, 2π)
into s = 100 equal length subintervals, we are able
to approximate the discrete probabilistic masses of the
subintervals using the frequencies of occurrence from the
data. Thus the discrete entropy-based angular diversity
can be computed from (1).

In our experiments below, we assume two sce-
narios where the true emitter locates atpe =
(40000/

√
2, 40000/

√
2) and pe = (0, 40000) respec-

tively. From (1), the angular diversity is a function
of the anglesα, and therefore the angular diversity is
completely determined by the shape of the trajectory, not
by its relative position to the emitter. Thus the angular
diversity quantities are the same in both scenarios. An-
gular diversities in the four trajectory cases are shown in
Table I.

From Table I, we see that the spiral has the highest
angular diversity among all 4 cases in the comparison.
The ratios of the diversities in the other 3 cases against
that in the spiral case are also shown. Since the location

TABLE I
ANGULAR DIVERSITIES FOR THE4 TYPES OFTRAJECTORY

Trajectory Type Angular Diversity Ratio Against Spiral

Sinusoidal 1.9666 0.291

Const. Acc. Turn 5.0124 0.851

Const. Vel. 0.0068 0.102

Spiral 6.6537 1.000

estimation accuracy is inversely proportional to the an-
gular diversity, the LBI estimator gives the best accuracy
performance among four test cases by flying along the
spiral shaped trajectory. On the contrary, the constant
velocity scheme performs the worst because the platform
acquires the least angular diversity along the trajectory.

B. Estimation Accuracy Improvements

Estimation accuracy corresponds visually to the shape
and area of the Least Squares surface contours around
the true emitter location which can be characterized as
the area of the estimation error ellipsoid. [15] shows that
the area of the ellipsoid is proportional to the CRB of the
estimator which is also proportional to the determinant
to the covariance matrix of the estimates. We use the
determinant to the estimation covariance matrix as a
single-value quantitative accuracy measure.

Fig. 2 shows the determinants of the covariance ma-
trices and illustrates the contours of Least Squares cost
surfaces in 4 scenarios with different trajectory patterns
mentioned above. From the contour plots, we clearly see
the surfaces are extremely multimodal and all have slim
ridges along the target bearing direction. However, in the
spiral trajectory case, the cost surface illustrates a shape
peak and is much less rippled outside the neighborhood
where the emitter truly resides. The Least Squares cost
surface shown in Fig. 2(d) is the most desirable one
when grid searching the LS cost as proposed in [4]
to find a local neighborhood to apply iterative least
squares algorithms on. Moreover longer the platform flies
along the trajectory, smaller the area of the ridge in the
spiral trajectory case gets which results in more accurate
estimate.

C. Robustness

Since the angle of arrival of the emitting signal is crit-
ical to the location estimation accuracy, performances on
platform trajectories which have clear moving tendencies
such as the sinusoidal wiggling, constant acceleration
turn and the constant velocity are sensitive to the varia-
tion of relative angleθ between the trajectory origin and
the true emitter location. On the other hand, estimation
accuracy performance on a spiral shaped trajectory is far
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(a) Sinusoidal Wiggling (det(Cov) =2.5531e + 5)
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(b) Constant Acceleration Turn (det(Cov) =1.4290e + 5)
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(c) Constant Velocity (det(Cov) =3.4267e + 5)
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(d) Spiral (det(Cov) =1.2733e + 3)

Fig. 2. LS Cost Surfaces for 4 Trajectory Types

more robust to the emitter position variation because spi-
ral trajectory achieves approximate angular fairness, i.e.
maximum angular diversity. The geometry and relative
angle between trajectory origin and the emitter is shown
in Fig. 3.

The simulation result on the robustness in the 4 trajec-
tory cases is shown in Fig. 4 from which the robustness
of the proposed spiral trajectory based location estimator
is demonstrated. The estimation accuracy which is evalu-
ated as the determinant of the covariance matrix is plotted
on the logarithmic scale. Sinusoidal wiggling trajectory

achieves its best performance when the emitter locates
at θ = π/2, 3π/2 relative to the origin while constant
turn trajectory. The constant acceleration turn and the
constant velocity scheme obtains their most accurate
results aroundθ = pi/4, 5π/4 and θ = kπ/4, k = odd
respectively. Notably the spiral trajectory dramatically
outperforms the other 3 schemes throughout the en-
tire angular axis. Moreover, the spiral trajectory based
estimator shows little performance variation while the
other 3 schemes suffer considerable estimation accuracy
fluctuation as the relative angleθ varies. This illustrates



Fig. 3. Relative Angle Between the Trajectory Origin and theTrue
Emitter Location

the robustness of the proposed trajectory pattern.
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Fig. 4. Estimation accuracy sensitivity to the signal angleof arrival
in the 4 cases
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