NanoSight Software NTA

NTA is Malvern’s software NanoSight range of instruments. It allows videos of particles moving under Brownian motion to be captured and analyzed to generate high resolution size and concentration data.

Measurements are run via SOP-type procedures with default options for standard measurements and user defined options for additional flexibility.

Hardware control is integrated into the software for control of temperature, flow rate, focus etc… when appropriate hardware is available.

NTA Key Features

- High resolution particle size distribution algorithm
- Advanced image analysis, particle detection and tracking
- Integrated scripting option for SOP development
- Basic statistical parameter output
- Vibration detection and correction
- Integrated hardware control and communication
- PDF and CSV document export options
Getting Started

Double click the NanoSight NTA Software Icon on desktop

Typical NTA Home Screen

Connection status is detailed in the Hardware Information window. Any hardware attached to the equipment, if available, such as the syringe pump will be automatically detected by the software. Check that the required hardware is detected. If the required hardware is shown as ‘not found’, check connections and power.

Notes:
- For users new to the NanoSight Instrument and NTA software, we recommend making first measurements using size-calibrated standard particles.
Information Symbols

During processing various information symbols may be displayed, hovering over these will give more information about the warning.

Making a Measurement

This is a two-step process:

1. Optimize the image
2. Take a measurement.

For advice on loading samples and operation of the hardware go to the NanoSight NS300 operating manual.

1. Optimizing the Image

This is an iterative process between Camera Level, Sample Concentration, Beam Position, and Focus.

Different sample types will require different final settings.
To obtain an initial live image for optimization

- For multi-laser systems, select the correct laser from the hardware tab at the top of the screen.

Select Capture

Set Camera Level to Max

Click Start Camera

Adjusting the Camera Level

Correctly setting up the camera and sample image prior to capturing the video are essential to achieving valid results. The software is designed to provide warnings at the extremes of operation, but to optimize the results from a particular sample, the user must ensure that the manual settings are as close to perfect as possible.
- Increase the **Camera Level** until all of the particles in the sample can be seen clearly but no more than 20% are saturated (coloured pixels).

- Poor Monodisperse Sample
 ![Poor Monodisperse Sample](image)

- Good Monodisperse Sample
 ![Good Monodisperse Sample](image)

- Poor Polydisperse Image
 ![Poor Polydisperse Image](image)

- Good Polydisperse Sample
 ![Good Polydisperse Sample](image)

Concentration

The NanoSight instruments can work with particle concentrations in the range of ~10^7-10^9 particles/ml, which is approximately 20-100 particles in the field of view.

Too high a sample concentration may prevent accurate particle tracking.

Lower concentrations require longer capture and analysis time to produce statistically significant results.

It is possible to use the NanoSight syringe pump to improve results by sampling more particles.

- a) Concentration too high 208 particles identified
- b) Concentration too low 1 particle identified
- c) Ideal concentration 44 particles identified
Laser Beam Position

The illuminated particles need to fill the field of view.

Use left mouse button to drag and center the image.

Image Focus

Initial focus is set with the manual control on the side of the NanoSight NS300, adjust for fine focus within the software.

Because the particles are constantly moving it can be difficult to achieve a uniform perfect spherical focus.

Indistinct particles, as in a) will give inaccurate results.

Ideally, particles should appear as in b) but those in c) will be acceptable if that is the best image that can be achieved.
Taking a Measurement

- Select Standard measurement

- Number of Captures:
The default number and length of video captures are suitable for most samples.

- Base Filename:
Select the name and location for the captured video files.

 o For dilution and viscosity settings press Advanced.

 o Sample dilution factor can be entered. Where the diluent is not water, solvent viscosity must be entered here.

 o It is recommended that the lower check boxes are left checked to avoid heat build up between readings (Temperature off., Camera/laser off…, Save Viscosity…).

 o Click OK.

- The sample is ready to be measured.

- Click Create and Run script.

‘Scripts’ are sets of instructions that control the software for each measurement.

The NTA software contains options for:

- Standard Measurement
 Suitable for most size and concentration measurement within instrument specifications.

- Quick Measurement
 Creates a single video and analysis.

- Recent Measurements
 A list of the last 10 measurements taken allowing the rapid repeat of readings.

- Zeta Measurement
 Not applicable for NS300 instruments.
Capture
User prompted for and sample details to be included with the video files and output files (optional).

- Click **OK**

The software will prompt for the sample to be advanced (this will be requested at the start of each repeat capture according to the script). The NanoSight Syringe Pump accessory provides the alternative of continuous sample flow.

Following video capture the software defaults to immediate processing.

This screen is now showing the captured video rather than the live sample image.

Detection Threshold must now be set before starting video processing.
Processing

Detection Threshold

- The Detection Threshold determines the minimum brightness of pixels to be considered for tracking.
- The lower the setting the more centers will be found; however if it is too low, ‘noise’ can be tracked. If the setting is too high, particles will be excluded.
- For the best analysis, identify the center of each particle by reducing the Detection Threshold to a level to include as many particles as possible and within the following restrictions:
 - In the bottom right of the image is a count of the number of red crosses. This should be between 10 and 100.
 - When considering the image by eye, some of the red crosses may not appear to be distinct particles. Ideally there should be <10 such crosses.
 - There may also be blue crosses on the screen. Ideally there should be <5.
 - IMPORTANT: The detection threshold setting must not be altered between videos on the same sample measurement (e.g. all 5 videos recorded of sample with the same Capture Settings should be analysed with the same detection threshold).

Set Detection Threshold

Adjustment is available with slider or the + or - buttons.

Check the selected setting with multiple frames of the video. By moving the slider under the main screen the image quality in additional frames can be checked.
When the particle Detection Threshold has been set the measurement process can be started.

Press Ok

During processing the image will appear to be brighter than during the set-up phase.
As the software processes the video images red ‘tracks’ appear on the screen depicting the Brownian Motion of the particles.

Size (nm) vs Concentration (particles/ml) measurements are shown on the blue (default) graph, overlaying the particle screen as the video(s) are processed.

The same measurements are additionally displayed as a **scatter plot** (Size (nm) vs Intensity (a.u.)), and as a **3D plot** (Size (nm) vs Concentration (particles/ml) vs Intensity (a.u.)).

- Any vibration will affect the motion of the particles which can influence sizing accuracy.
- Although the NTA3.0 software compensates for some interference, best results are achieved with zero vibration.

Example: Screen view at the end of processing for n=5 captures from one sample.

Individual size distribution profiles of the 5 captures for the sample are over-plotted.

Mean ± SEM for the concentration, mean size, modal size and SD of the sample are shown.
To View the Combined Data Profile ± SEM

Place the cursor in the main graph area, right click the mouse to open a graph display options menu and select **Switch Multigraphs/Average**.

To View the Data for a Single Capture.

Select File.
Double click the chosen file.
The size distribution data for the chosen capture will be displayed.
Data Export

At the completion of processing the software automatically opens the Export Settings options window.

The defaults are for PDF graphs and batch summaries.

Raw data for further processing can be exported as CSV files.

The AVI files used to capture the video data are very large (e.g. a 60 sec video uses ~0.5GB of data). NTA Software gives the option to export the videos as WMV files for customer support, demonstration and presentation purposes, including a 10 sec option.

Click Export.

PDF Data Export

Example of exported PDF report for n=5 data from one sample;

The size distribution profile data are shown over-plotted. Mean ± SEM data are shown, with the size of the key peaks annotated.

The lower panels include data on the settings used along with a results summary.

Typically the modal particle size is used to describe the sample.

The SD is a measure of the width (spread) of the size distribution profile.

D10, D50 and D90 values indicate percent undersize, for example 50% particles are 229nm or smaller, giving another indication of the spread of particle sizes within the sample.

When vibration has been detected during the measurement, the size reported will be smaller than the true size of the particles in the sample.
Notes

1. Each column represents a captured file
2. Initial camera settings and capture information
3. Processing settings
4. Concentration and included particles
5. Processing and warnings history
6. Analysis results

CSV file Data Export

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV file Data Export</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Each column represents a captured file</td>
</tr>
<tr>
<td>2. Initial camera settings and capture information</td>
</tr>
<tr>
<td>3. Processing settings</td>
</tr>
<tr>
<td>4. Concentration and included particles</td>
</tr>
<tr>
<td>5. Processing and warnings history</td>
</tr>
<tr>
<td>6. Analysis results</td>
</tr>
</tbody>
</table>
Appendix

Appendix 1: Typical data profiles

The profile obtained depends upon the type of sample measured.

When the particle size of the sample is more controlled, e.g. size standards, extruded liposomes etc., a narrow size distribution profile with a single peak should be obtained, indicating a mono dispersed sample (see above).

For samples such as extracellular vesicles purified with a sucrose gradient, it is likely that the main peak if the profile is broader with one or more peaks identified (see above).

For polydisperse samples e.g. aggregated protein, a very polydisperse size distribution profile might be expected with many peaks identified, which typically decrease in peak-height as size increases.
Appendix 2: Guidance for accepting data

Accepting the data depends on the type of sample you are measuring.

When multiple profiles for the same sample measurement are plotted together, the similarity of the profiles should be in keeping with the level of polydispersity, providing no sampling errors are present and the sample was measured for long enough, i.e. a monodispersed sample should over-lay closely for the data to be acceptable, whilst a polydisperse sample can have less reproducible profiles and the data may still be acceptable.

Monodisperse sample

Polydisperse sample

Notes

- Samples of the same type should be measured using the same settings for comparison.
- Polydispersed samples will typically need to be captured for longer to generate good data.
- Samples with a naturally low level of particles/ml will need to be captured for longer to generate good data.
- Users are advised to refer to the PDF and CSV data output files to check for warnings that could result in invalid results.
Appendix 3: Fluorescence Measurements and Syringe Pump

- Insert sample as normal

If using a syringe pump:
1. Set Infusion Rate to 1000 and click Infuse
2. When flow is established, reduce Infusion rate to the required level and click 'Infuse' again

```
[Image of the NanoSight NS300 interface]
```

Set flow speed

<table>
<thead>
<tr>
<th>Laser Module Top Plate Style</th>
<th>Recommended Flow Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS300 "O" ring (metal)</td>
<td>50-80</td>
</tr>
<tr>
<td>NS300 flow-cell</td>
<td>20-50</td>
</tr>
</tbody>
</table>

Select filter from the Hardware->Filter Wheel menu

- Position 1: Clear (empty) scatter measure
- Position 2: Fluorescence

Notes

Always follow the flow speeds recommended
Appendix 4: Fluorescence Measurements

Increase camera level to maximum, and reduce histogram upper limit in the ‘Adv Camera’ hardware tab, if required.

Adjust focus if required.

Select and run and ‘Standard Measurement’ as previously described.

If using the syringe pump, select ‘Continuous Syringe Pump Flow rate’ and set the required rate in the Advanced capture settings window.
Appendix 5: NTA Software

Software Map