Notes on "Rate-Distortion Methods for Image and Video Compression," A. Ortega and K. Ramchandran IEEE Signal Processing Magazine Nov. 1998 pp. 23 – 50

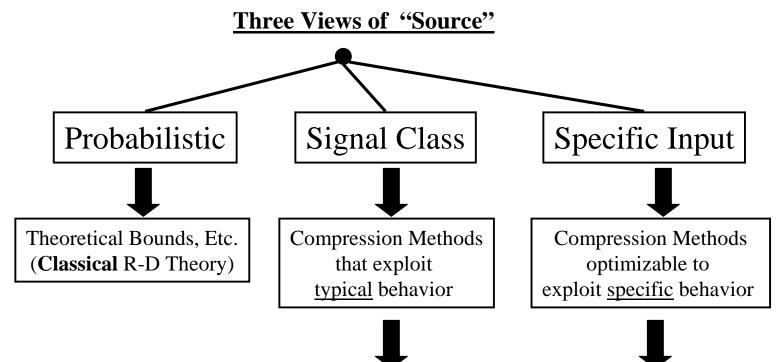
EE523 Prof. Fowler

1

I. From Shannon Theory to MPEG Coding

I-A. Classical R-D Theory

• Concerned with representing a source with the smallest number of bits possible for a given reproduction quality



- Coding Scheme (framework): design based on typical features
- Coding Parameters: chosen on input-by-input basis to optimize to a particular input

I-B. Distortion Measures

- Elusive Goal: finding a general, easily computed measure of <u>perceptual</u> quality
- Workable approach: apply simple, perceptually-sound design rules
- Example: Not all frequencies are equally important to hearing/vision
 - Use a perceptually-weighted MSE criteria

$$MSE_{PW} = \int_{-\pi}^{\pi} \left| W(\Omega) \left[X(\Omega) - \hat{X}(\Omega) \right] \right|^2 d\Omega$$

- After perceptual weighting, use optimized encoder to minimize
- Note: perceptual weighting works well
 - Tests of proposals made for JPEG-2000 showed that those that minimized some perceptually-weighted MSE criteria were judged best

I-C. Optimality & R-D Bounds

- <u>Classical</u>: Given a statistical model, find the lower bound on R-D
 - Limited to:
 - Simple Statistical Models
 - Asymptotic Results (large block or high rate)
- <u>**Practice**</u>: Optimizing performance consists of:
 - 1. Given a particular type of data, what is the appropriate model for that type of data (probabilistic or otherwise)?
 - 2. Given the chosen model (in #1), and any applicable bounds, how close can a practical algorithm get to the bound?

Both steps are equally important

Box #1: Experiments on Statistical Models

- <u>**Two experiments**</u> to explore the impact of choice of model on compression
- **Experiment #1**: Actual R-D of a method vs. <u>R-D bound for simple model</u>
 - Method = SPIHT applied to "Lena"
 - Simple Model = i.i.d. zero-mean Gaussian model for each subband
 - Uses empirically measured variance for each subband
 - "Shannon R-D Bound" uses infinitely-long vectors (asymptotic result) → infinite complexity!
 - **<u>Result</u>**: Choice of model is very important!!!
 - SPIHT model + SPIHT low-complexity <u>suboptimal coder</u>: <u>better</u>
 - IID Gaussian Model + infinite-complexity <u>optimal coder</u>: <u>worse</u>

Box #1: Continued

- **Experiment #2**: See how well various statistical models can synthesize image.
 - Create a random realization of wavelet coefficients using some statistical model with parameters set using measured values from "Lena"
 - Synthesize the "the image" using inverse wavelet transform
- <u>Model #1</u> (<u>Global</u> Subband Variances, <u>No Sign</u> Info)
 - Measure variance in each subband
 - Use i.i.d. Laplacian (+/-) with measured subband variances
- <u>Model #2</u> (<u>Global</u> Subband Variances, <u>With Sign</u> Info)
 - Measure variance in each subband
 - Use i.i.d. Laplacian model (+) for magnitudes w/ measured subband variances
 - Random coefficient signs are set to true values for "Lena" coefficients
- <u>Model #3</u> (Local Subband Variances, <u>No Sign</u> Info)
 - Measure local variances in each subband (spatially/spectrally varying variances)
 - Use i.i.d. Laplacian model (+/–) with measured local variances
- <u>Model #4</u> (Local Subband Variances, <u>With Sign</u> Info)
 - Measure local variances in each subband (spatially/spectrally varying variances)
 - Use i.i.d. Laplacian model (+) for magnitudes w/ measured local variances
 - Random coefficient signs are set to true values for "Lena" coefficients

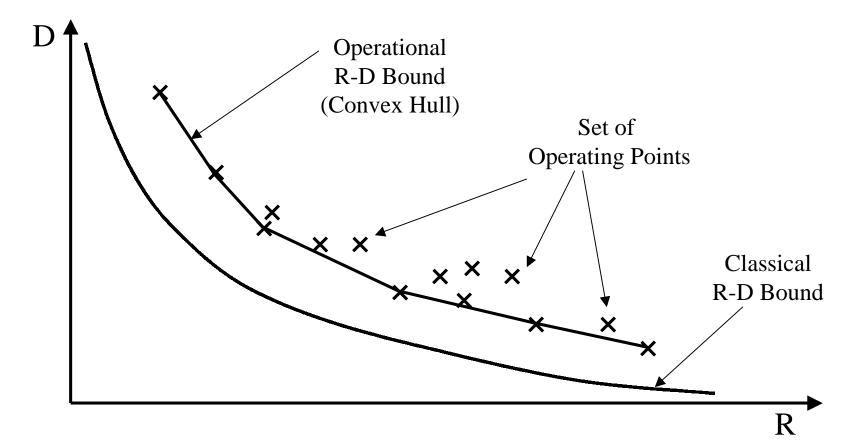
II. Operational R-D in Practical Coder Design

II-A. Choosing Parameters of Concrete System: Operational R-D

- Abandon (classical) search for best unconstrained R-D performance
- Adopt the following operational approach :
 - Choose a specific coding scheme
 - Efficiently capture relevant statistical dependencies of source type of interest
 - Satisfies system requirements (complexity, delay, memory, etc.)
 - Search for the best operating points for <u>that specific</u> system
- Consider <u>Optimality in the Operational Sense</u>
 - Given our choice compression framework:
 - Find best achievable performance for a given source
 - Source is described by a <u>training set</u> or given <u>statistical model</u>
 - Training set is most practical (because useable closed-form models aren't usually known for real sources)

An Operational R-D Characteristic

• Composed of all possible operating points obtained by applying admissible coding parameters to each of the elements in a particular set of test data



II-B. Choosing a Good Model: Transform Coding

- Main challenge in achieving good R-D performance is finding a model that is
 - <u>Simple enough</u> that good performance can be achieved with reasonable "cost"
 - <u>Complex enough</u> to capture main characteristics of source
- Many choices are available:
 - Scalar
 - Vector
 - Transform (which one?)
 - Predictive
 - Signal-Model Based
 - E.g., speech compression models speech as AR and sends AR parameters rather than samples or transform coefficients
 - What PDF?
 - Local vs. Global Variance Estimates
 - Spatial Redundancy Structure (e.g., trees as in EZW & SPIHT)
 - Etc.

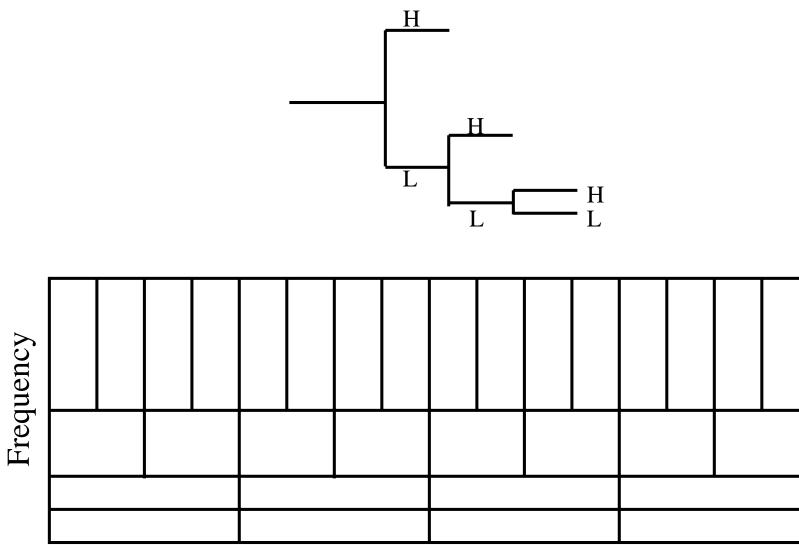
Box #2: Duping JPEG in Operational R-D Sense

- Although we described JPEG from the encoder point of view:
 - JPEG standard is actually syntax-specified from the decoder point of view
 - \rightarrow Encoder has flexibility to deviate from "standard" operation
- Simplest Way:
 - use custom quantization matrix and entropy tables on per-image basis
- More devious way:
 - Encoder "dupes" the decoder in an optimal R-D way while meeting syntax
 - Example: a small non-zero value can breakup otherwise long runs of zeros
 - They are Expensive from R-D view
 - Encoder lies to the decoder: says this non-zero is zero
 - \rightarrow code as long run of zeros; more efficient coding
 - Encoder does this if it improves the R-D
 - Decoder "doesn't know any better"
 - Research results: gains on order of 25% in compression efficiency
- This is an example of Operationally Optimal R-D
 - Given JPEG syntax as framework
 - Optimize R-D over the parameters

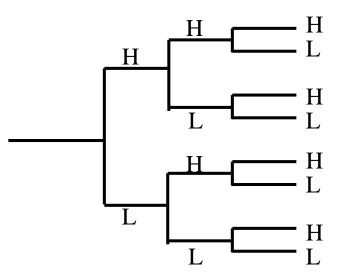
Box #3: Adaptive Transforms from Wavelets

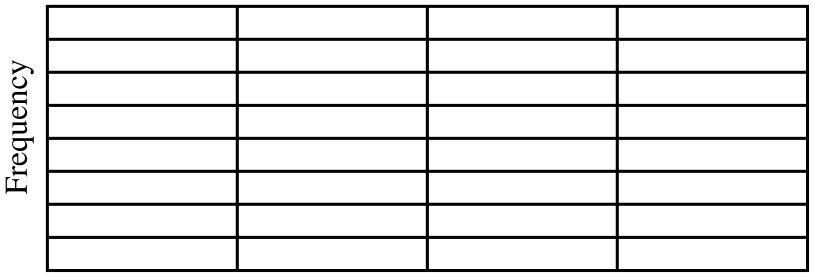
- General transform coding framework:
 - Transform, quantizer, entropy coder
 - We've talked about encoder adapting quantizer and/or entropy coder
 - i.e., via bit allocation
 - But, could also adapt the choice of transform
- Example: Wavelet is actually a family of flexible transforms
 - Adaptively choose a mother wavelet
 - e.g. choose a particular filter from set of allowable wavelet filters
 - Adaptively choose the number of subbands used
- Even more flexibility comes from generalizations of wavelets
 - Called wavelet packets
 - Come about from modifying wavelet filterbank structure
 - Don't always "leave HP channel, split LP channel"

Box #3: Wavelet Tree and T-F Tiling

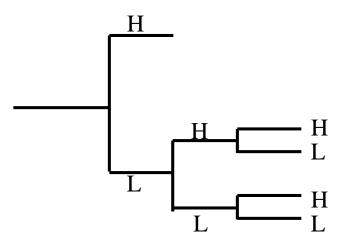


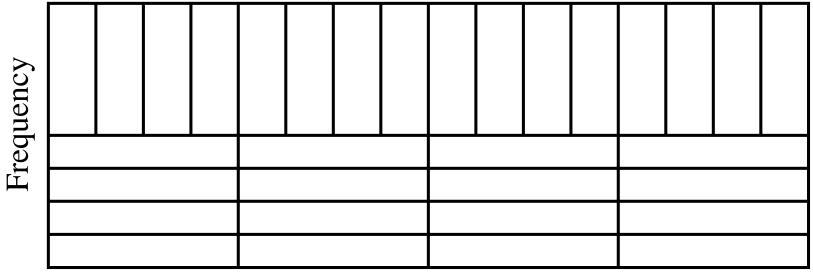
Box #3: STFT Tree and T-F Tiling



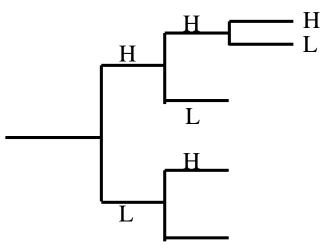


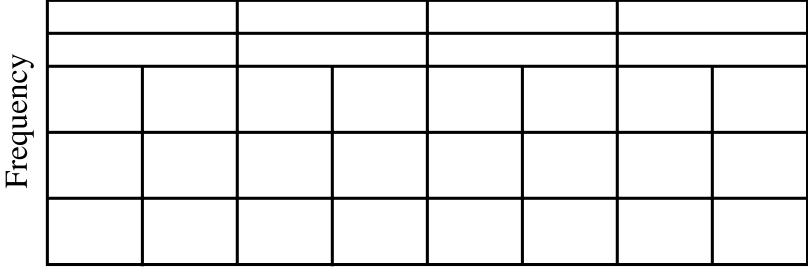
Box #3: *A* **Wavelet Packet Tree and T-F Tiling**





Box #3: Another Wavelet Packet Tree and T-F Tiling





II-C. Standards-Based Coding: Syntax-Constrained R-D Optimization

- Compression standards provide an agreed upon bit stream syntax
 - Needed to ensure interoperability
 - Any standard-compliant decoder can then decode bit stream
- Goal: <u>Syntax-Constrained Optimization</u>
 - Encoder's task: select the best operating point from a discrete set of options agreed upon *a priori* by a fixed decoding rule (i.e. the decoder syntax)
 - Selected Operating Point is Side Information
 - Sent to decoder (typically in the header)
 - Trade-offs:
 - Flexibility vs. Amount of Side Info
 - Flexibility vs. Computational Complexity

II-C. Standards-Based Coding (cont.)

Formulation #1 – General Discrete R-D Optimization: Given a specific encoding framework where the decoder is fully defined, optimize the encoding of a *particular* image or video sequence in order to meet some rate/distortion objectives

- Note: optimizing for a *particular* input
- Caution: selection of the coding framework is key to performance
 - Bad Approach: poor framework & sophisticated optimization method
 - Recall Exp. #1 in Box #1: i.i.d. Gaussian & Shannon Coding = Bad
- Optimal Solution = the operating point giving best objective function value
- Since there are finite number of operating points (coding choice)
 - Could do an exhaustive search
 - But, strive for efficient non-brute-force optimization approach

Box #4: Delay Constrained Transmission & Buffer Control

- Coding of Video Sequences results in a variable bit rate
 - Need an <u>Encoder Buffer</u> to connect the <u>variable bit rate (VBR) coded</u> stream to the <u>constant bit rate (CBR) channel</u>
 - Need <u>Decoder Buffer</u> to connect the <u>CBR channel</u> to the <u>VBR decoding</u> <u>stream</u>
- Video Input Rate = Video Output Rate \rightarrow <u>constant ΔT </u> (end-to-end delay)
 - Frame coded at time t must be decoded at time $t + \Delta T$



Box #4: Delay Constrained (Cont.)

- Encoder/Decoder Delays, ΔT_e and ΔT_d , assumed constant due to processing considerations
- Channel Delay, ΔT_c , is assumed constant because of CBR channel
- Thus, only buffer delays, ΔT_{eb} and ΔT_{db} , are variable
- Constraint on end-to-end delay $\Delta T \rightarrow$ Need for <u>encoded rate control</u>
 - Constraint on ΔT puts an upper bound on buffer size B_{max} (in bits)
 - Need $B_{max} < C \Delta T$ where C = channel rate in bits/s
 - Otherwise bits going in when buffer is nearly full would take more than ΔT to come out at the emptying rate of C
 - Range of Variation in Coded Rate puts lower limit on B_{max}
 - Otherwise we could overflow the buffer during high-rate segments
 - Thus we either have to:
 - Use large buffers to deal with rate variation (causes excessive delay)
 - Use shorter buffers to meet delay and reduce variation using rate control to ensure buffers don't overflow
- Note that MPEG (and other methods) have rate control capabilities
 - Research Issue: Operational R-D Optimized Rate Control

III. Typical Allocation Problems

- Two Basic Classes
 - Compression for Storage
 - Rate Budget Constraint
 - Compression for Transmission
 - Delay Constrained
 - Buffer Constrained

Several Practical Issues to Address

- Selection of Basic Coding Unit
 - $\underline{\text{Coding Unit}}$ = entity for which encoder parameters can be set
 - Sample, Block, Image, Subsequence of Frames, Etc.
 - Example: Video
 - Might use Coding Unit = Video Frame
 - Measure frame-wise rate-distortion & decide operating point per frame
 - Example: Image
 - Might use Coding Unit = 8×8 block of pixels (JPEG)
 - Optimization could be over a single coding unit or multiple units
- **Complexity** Two main sources:
 - R-D itself may have to be measured from data (several encodes/decodes)
 - Can ease this by using models or approximations of R-D
 - Finding the Optimal operating point

Several Practical Issues (Cont.)

- **Cost Function** May include both rate and distortion
 - Easily computed for each coding unit
 - But, when allocating among several units:
 - Overall cost requires careful definition
 - There are several options
 - Example: Long Video Sequence
 - consider cost = average distortion over all units
 - Is this really a desirable cost function?
 - Could have large <u>peak</u> distortion in some frames
 - Might it be better to minimize worst-case distortion?
 - So-called minimax criterion
 - Could have larger <u>average</u> distortion
 - Also should consider perceptually-weighted versions
- Notation

••

- N coding units (i = 1, 2, ..., N) Each having M operating points (j = 1, 2, (j = 1, 2, ..., N))

Notation

- Assume N coding units (i = 1, 2, ..., N)
- Each coding unit has M operating points (j = 1, 2, ..., M)
- For the i^{th} coding unit when using the j^{th} "quantizer" we have
 - Rate: r_{ij}
 - Distortion: d_{ij}
- "Quantizer" indices j are listed in order of increasing coarseness
 - -j = 1 is the finest quantizer (highest rate, lowest distortion)
 - j = M is the coarsest quantizer (lowest rate, highest distortion)
- Will formulate problems under two types of constraint
 - Total Bit Budget (e.g., storage applications)
 - Transmission Delay (e.g., video transmission)

III-A. Storage Constraints: Budget-Constrained Allocation

- Here, rate is constrained by a restriction on the maximum total number of bits
 - Total Number of Bits = R_T
 - Must allocate the R_T bits among the *N* coding units
 - Allocation should minimize some overall distortion metric
- Examples:
 - Allocate bits among 8×8 blocks of pixels in an image
 - Allocate bits among a set of images to be compressed into an archive
 - Here we may care about the <u>aggregate</u> quality of the <u>set</u> of images

III-A. Budget-Constrained Allocation (Cont.)

Formulation #3– Budget Constrained Allocation:Find the optimal quantizer (i.e., operating point) j(i) for each
coding unit i such that $\sum_{i=1}^{N} r_{ij(i)} \leq R_T$ and some metric $f(d_{1j(1)}, d_{2j(2)}, \dots, d_{Nj(N)})$ is minimized.

• Example Metric: Minimum Average Distortion Metric (i.e., MMSE)

$$f(d_{1j(1)}, d_{2j(2)}, \dots, d_{Nj(N)}) = \sum_{i=1}^{N} d_{ij(i)}$$

- Note: Formulation #3 with the Minimum Average Distortion Metric is nothing more than the bit allocation problem we already looked at
 - Where we assumed:
 - Each quantizer's input was i.i.d. with some known variance

Alternative Metrics for Formulation #3

• Minimax (MMAX) Approach

- Minimize the maximum distortion over the coding units
- That is, for all possible operating points, the optimal point is the one with the smallest maximum distortion
- Example showing only three possible operating points:
 - $d_{18} = 113, d_{27} = 91, d_{33} = 34, d_{45} = 47$ MSE = 285 MAX = 113

•
$$d_{16} = 97, d_{25} = 95, d_{34} = 50, d_{44} = 50$$
 MSE = 292 MAX = 97

•
$$d_{17} = 103, d_{24} = 86, d_{36} = 90, d_{44} = 55$$
 MSE = 334 MAX = 103

- First one is MMSE solution; Second one is MMAX solution
- Is a good alternative to MMSE
 - MMSE can result in some really bad distortion in a small number of units
 - MMAX tries to put a limit on the "worst that can happen"

Alternative Metrics for Formulation #3 (Cont.)

- Lexicographically Optimal (MLEX) Approach
 - Sort quantizers used into decreasing order of index (i.e. decreasing MSE)
 - Use sorted indices to form the digits of a number (one per operating point)
 - The optimal point is the one with the smallest such number
 - Example showing only three possible operating points (same as above):
 - $d_{18} = 113, d_{27} = 91, d_{33} = 34, d_{45} = 47$ LEX = 8753 MSE = 285
 - $d_{16} = 97, d_{25} = 95, d_{34} = 50, d_{44} = 50$ **LEX = 6544** MSE = 293
 - $d_{17} = 103, d_{24} = 86, d_{36} = 90, d_{44} = 55$ LEX = 7644 MSE = 334
 - Second one is MLEX solution
 - MLEX is a generalization of MMAX
 - MLEX tends to equalize distortion across all coding units
 - Gives the coded data a more uniform appearance

III-B. Delay-Constrained Allocation & Buffering

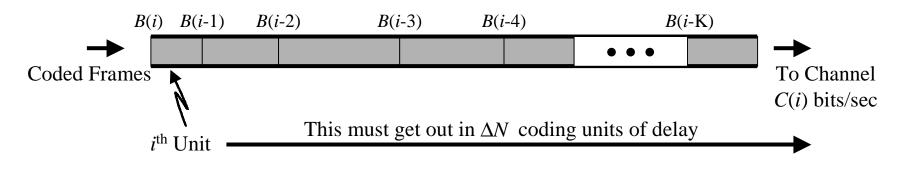
- Formulation #3 can't handle case where coding units (e.g., video frames) are streamed across a link
- The constraint here is: each coding unit is subject to a delay constraint
 - Let a coding unit be coded at time *t*
 - It must be available at the decoder at time $t+\Delta T$ (assumes fixed decode time)
 - Where ΔT is the end-to-end delay
 - Can express coding delay in terms of "coding units"
 - If each coding unit lasts t_u seconds, then
 - $-\Delta N = \Delta T / t_u$ is the coding delay in "coding units"
 - So, at any time there will be ΔN coding units in the system stored in:
 - Encoder buffer, in transit, decoder buffer
 - Ex: For 30 frames/sec and $\Delta T = 2$ sec
 - Then have $\Delta N = 2 / (1/30) = 60$ stored frames

Formulation #4 – **Delay Constrained Allocation**:

Find the set of quantizers j(i) such that each coding unit *i* coded at time t_i is at the decoder at time $t_i + \delta_i$ while minimizing a distortion metric $f(d_{1j(1)}, \dots, d_{Nj(N)})$. For ease, often assume that $\delta_i = \Delta T$ is the same for all coding units.

Impact of Delay Constraint on Buffer

- What impact does this delay constraint have on buffer constraints?
 - Assume a variable channel rate: C(i) bits/sec during the i^{th} coding interval
 - Then encoder buffer state at time *i* is:
 - $B(i) = \max \{ [B(i-1) + r_{ij(i)} C(i)], 0 \}$ w/ initial state B(0) = 0
 - Also, B(i) can't grow larger than buffer physical size: $B(i) \le B_{\text{max}}$
 - **<u>BUT</u>**, there is another constraint on the buffer:



• How many bits can be emptied in ΔN coding units?

$$B_{eff}(i) = \sum_{k=i+1}^{i+\Delta N} C(k)$$

• Thus, to get the i^{th} unit to the decoder in ΔT seconds using this channel there can be no more than $B_{eff}(i)$ bits in the buffer after the i^{th} unit is put in the buffer

Delay Constraint Leads to Buffer Constraint

Formulation #5 – **Buffer Constrained Allocation**:

Find the set of quantizers j(i) such that the <u>buffer occupancy</u> B(i) doesn't exceed the <u>effective buffer size</u> $B_{eff}(i)$ while minimizing a distortion metric $f(d_{1j(1)}, \ldots, d_{Nj(N)})$; where

$$B_{eff}(i) = \sum_{k=i+1}^{i+\Delta N} C(k) \qquad B(i) = \max\{[B(i-1) + r_{ij(i)} - C(i)], 0\}$$

- Note: constraints depend on the channel's <u>future</u> rates!!!
 - If user can choose the rates (e.g. transmission over a network):
 - What is the best combination of channel rates and compression rates?
 - If future rates are uncertain:
 - Can't know deterministically what the effective buffer state is
 - Thus, need a good model of expected channel rates
 - Need some probabilistic model

IV. The R-D Optimization Toolbox

- Two Types of Problems
 - Independent Problems
 - R-D operating points can be measured indep. for each coding unit
 - Dependent Problems
 - R-D operating points for a coding unit depend on choices made for the others

IV-A. Independent Problems

- Here, r_{ii} and d_{ii} can be measured independently for each coding unit
 - Example: JPEG coding of AC DCT components; coding unit = block
 - Not Independent: anytime prediction between coding units is used
 - Example: MPEG frames using motion-compensated prediction
 - Sometimes ignore dependence to speed up encoding
- Goal: Given some chosen coding framework:
 - Compute or obtain the achievable R-D operating point data
 - Use some optimization method to choose the optimal operating point according to some appropriate formulation
- Two main optimization methods discussed:
 - Lagrangian
 - Operational form of "equal slope" solution we discussed earlier
 - Dynamic Programming
 - Trellis-based solution (similar to Viterbi Algorithm in digital comm.)

Lagrangian Method

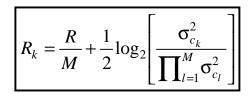
- Recall the Equal Slope result we derived in class (more detailed than text)
 - Optimal allocation must be such that $dR_i/dD_i = -\lambda$ for all *i*
 - But what value for λ ?
 - The one that results in: total # bits = bit budget

$- \frac{\lambda \text{ controls the total rate}}{\lambda \text{ controls the budget}}$ and is set to meet the budget

- We derived a closed-form optimal bit allocation result:
 - Used a <u>closed-form "high-rate" R-D</u> result for scalar quantizer $\int_{\sigma_{k}^{2}} = \alpha 2^{-2R_{k}} \sigma^{2}$
 - This is not an operational R-D approach
 - Got a result for the R_k that depended on λ
 - Plugged them into Total Rate constraint
 - Solved for λ and put result into R_k result

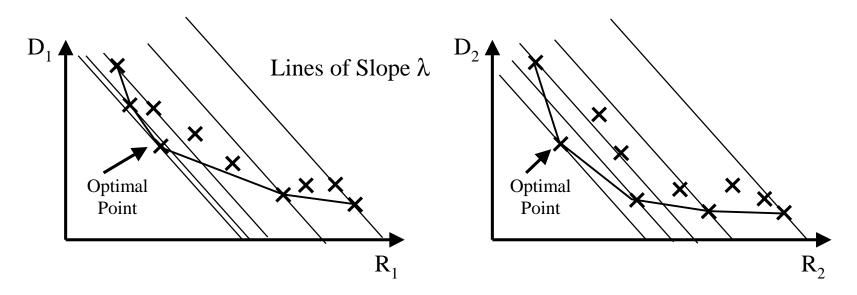
$$\mathbf{O}_k$$
 \mathbf{O}_{c_k}

$$R_k = \frac{1}{2} \log_2 \left[2\alpha \ln 2\sigma_{c_k}^2 \right] - \frac{1}{2} \log_2 [\lambda]$$



Lagrangian Method (cont.)

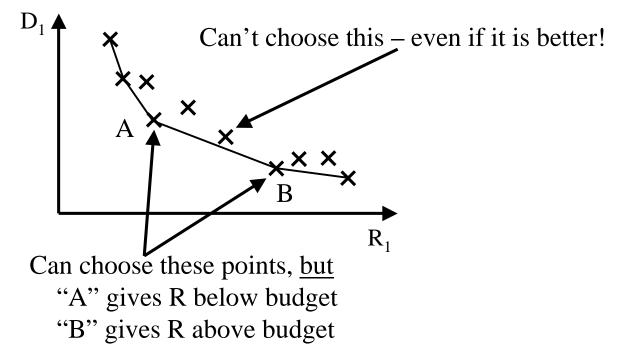
- What we want is a way to use Lagrangian method on <u>operational</u> R-D data
- Key points to draw from the non-operational allocation result:
 - Equal Slopes Condition gives Optimal Allocation
 - Slope = $-\lambda$
 - Value of λ is adjusted to obtain the desired total rate R that meets budget
- For a given λ and a given set of operational R-D data it is easy to find the point on the convex hull that is the optimal operating point:



• Challenge: finding the right λ to meet the budget

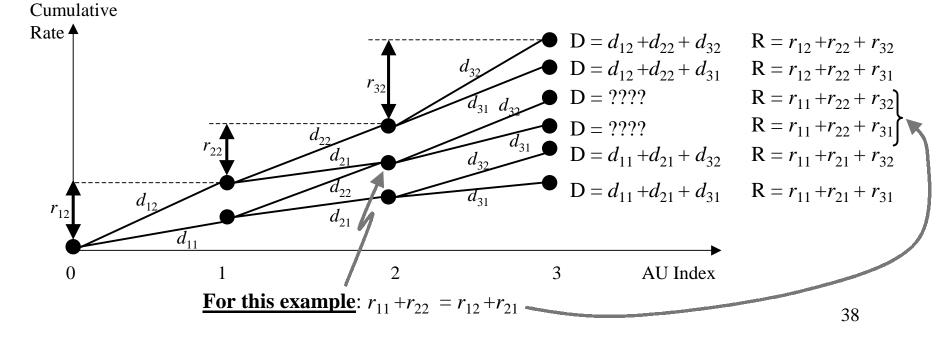
Lagrangian Method (cont.)

- Challenge: finding the right λ to meet the budget
 - Easy to do
 - Can be done independently for each coding unit
 - Uses the so-called "Bisection Search" Method (see references in paper)
- Complexity of Lagrangian method is low
- But, can have problems when only a few operating points are on convex hull:
 - Lagrange can't choose a point off the convex hull



Dynamic Programming Method

- For the Operational R-D problem:
 - Create a trellis (i.e., a tree) with each stage being a allocation unit (AU)
 - M quantizers \equiv M allocation units; each has P operating points
 - Thus, you have P^M possible allocations
 - Going from stage-to-stage: a branch for each of the *P* operating points
 - Each branch is labeled with the distortion achieved by that operating point
 - The node that each branch goes into is at height = cumulated rate of path
 - The **<u>non-pruned</u>** trellis looks like (for M = 3, P = 2):

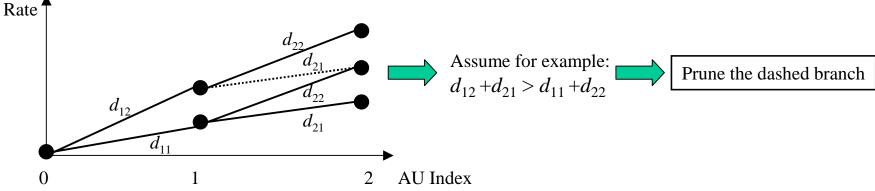


Dynamic Programming Method (cont.)

- **<u>Prune</u>** the trellis as it is built
 - Prune it to optimize
 - Prune it when it exceeds a constraint
- Pruning to optimize

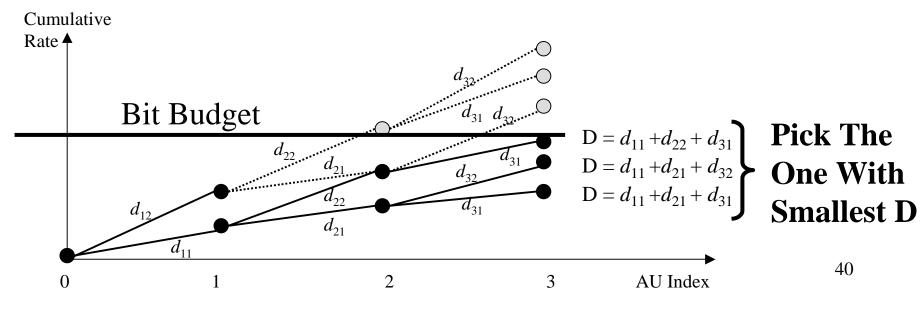
Cumulative

- If two branches go to the same node (i.e. have the same cumulative rate)
 - Prune the one with the larger distortion
 - Retains minimum distortion for that node
 - This is Bellman's Optimality Principle
 - » a.k.a. Viterbi Algorithm
 - » a.k.a. Dykstra's Algorithm



Dynamic Programming Method (cont.)

- Pruning to meet constraints
 - Prune a branch if it exceeds the Total Rate Constraint (Bit Budget)
 - Trellis can't grow above a "ceiling"
 - Prune a branch it it exceeds the Buffer Constraint
 - Would need to keep track of Buffer Size of Each Branch
 - On each branch, put a second "tag" along side its distortion tag
- Con: Computationally Complex
- Pro: Method can achieve operating points that are not on convex hull
- When points are dense on convex hull Lagrangian method can give nearly as good result at much less complexity



IV-B. Dependent Problems

- In some scenarios we can't make decisions independently on each coding unit
- One example of this is in predictive-based coding:
 - Assume that the i^{th} coding unit is predicted from the $(i-1)^{\text{th}}$ coding unit
 - Prediction is done using the past <u>quantized</u> data
 - Must use <u>quantized</u> data since that is what the decoder has available
 - Otherwise there is a growth in the quantization error variance
 - See equation (10.8) in textbook
 - But this use of <u>quantized</u> data causes a dependency between coding units when you try to find the optimal operating points
- To see how this works we first need to revisit the Lagrangian cost

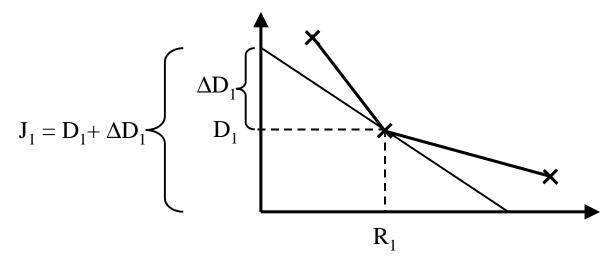
Revisit Lagrangian Cost

• Lagrangian Cost:

$$J = D + \lambda R$$

= $\sum_{i} D_{i} + \lambda \sum_{i} R_{i}$ \rightarrow $J_{i} = D_{i} + \lambda R_{i}$

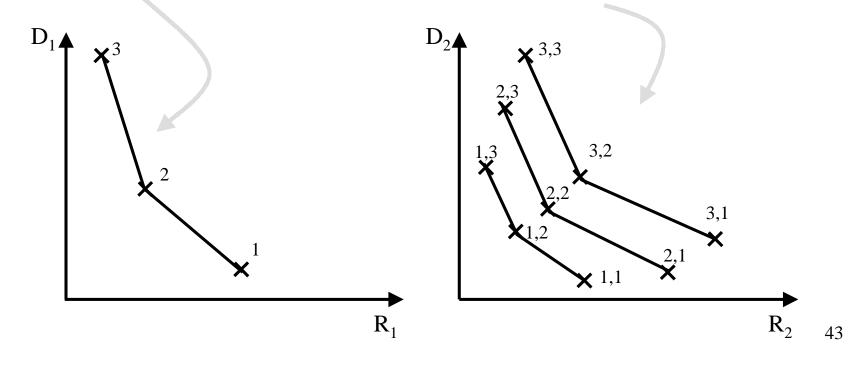
- Let's re-interpret what J_i is:
 - Recall that $-\lambda$ is the slope of the "operating line"
 - Thus, $\lambda = \Delta D_i / R_i \Rightarrow J_i = D_i + (\Delta D_i / R_i) R_i = D_i + \Delta D_i$



• Thus, we are minimizing the sum of the y-intercepts of the " λ -slope lines"

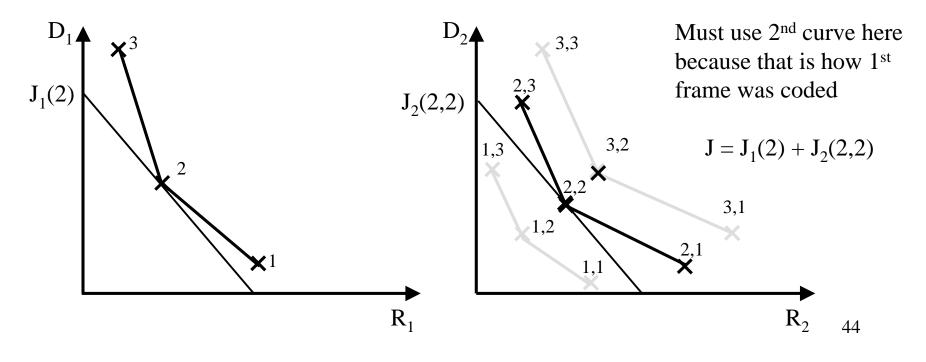
Dependency Between Coding Units

- Consider this simple video example of two frames:
 - Assume each frame can be coded at 3 different quantizer settings
 - 1st frame is an <u>independent</u> frame (e.g., an "I" frame in MPEG)
 - Thus, there are only 3 R-D operating points
 - 2nd frame is a <u>dependent</u> frame (e.g., a "P" frame in MPEG)
 - Thus, there are 9 R-D operating points
 - o There are 3 points for each possible point used for 1st frame



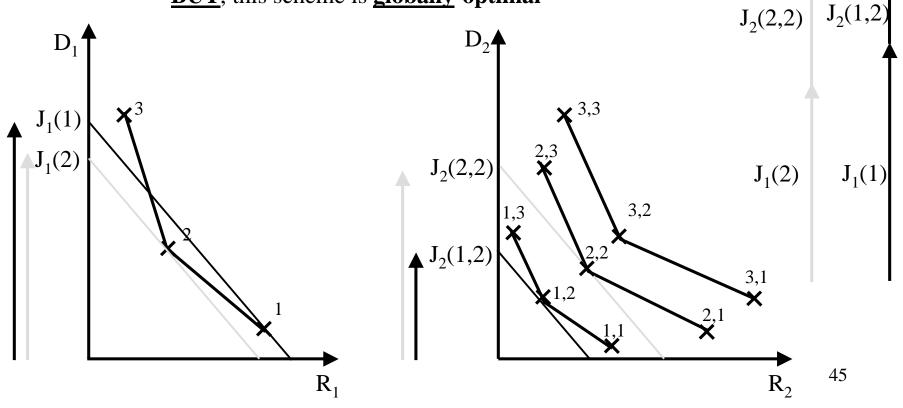
Ignoring Dependency

- If in this this example we ignored the dependency and coded each frame independently:
 - The 1st frame would be coded at operating point #2 (for the given λ)
 - 2nd frame operating points must be chosen from the 2nd curve because that is how the 1st frame is coded
 - This ignores dependency
 - You might be able to get a better cost J by jointly optimizing over all the operating points



Considering Dependency

- If in this this example we consider dependency:
 - Have to try all 9 possibilities (for the given λ)
 - (1;1,1) (1;1,2) (1;1,3) (2;2,1) (2;2,2) (2;2,3) (3;3,1) (3;3,2) (3;3,3)
 - Use the one (m;m,n) that gives the lowest $J = J_1(m) + J_2(m,n)$
 - Here the best is (1;1,2) because lowest is $J_1(1) + J_2(1,2)$
 - Note that the 1st frame is coded **locally-suboptimal**
 - **<u>BUT</u>**, this scheme is **<u>globally</u>-optimal**



Handling Dependency

- Complicates the computing of the R-D operating points
 - Can sometimes use analytic models of the dependent R-D characteristics
 - Then don't need to compute all possible operating R-D values
- Necessitates the use of dynamic programming
 - Use trellis-based approaches that capture the dependence
- Full trellis structure has exponential growth in number of combinations
 - Possible to make approximations that simplify the search
 - Possible to embed suboptimal approaches into the trellis
 - Prune at each stage use e semi-greedy approach

V. Application to Basic Components in Image/Video Coding Algorithms

- Budget Constraint Problems
 - Fixed-Transform-Based Case
 - Adaptive Transform-Based Case
- Delay Constraint Problems
- Role of R-D in Joint Source-Channel Coding

This section of the paper gives a tour of the types of problems that have been addressed in the recent literature and gives thorough pointers to relevant, high-quality references.