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Ch. 14 Subband Coding

Perfect Reconstruction Filterbanks
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Perfect Reconstruction for 2 Channels 
Recall the general structure of subband coding:

To Design the Filters: Imagine removing the encoders/decoders… Then design 
so that the output is a “perfect reconstruction” of the input
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We’ll limit here to M = 2 Channels…

The “analysis” side filters 
are half-band LPF & HPF

Q: To ensure PR how do we choose:

Analysis Filters: H1(z), H2(z)  

Synthesis Filters: K1(z), K2(z)

Note: If H1(z), H2(z), K1(z) & K2(z) are 
all ideal half-band filters then PR is 
easily achieved

But we can’t build ideal filters… So is it 
even possible to really get PR????
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Impact of Non-Ideal Filters
Stop-Band Issues

Analysis Filters: H1(z) & H2(z) will leave some content outside their half-
band passbands that gets aliased into the passband after decimation.

Synthesis Filters: K1(z) & K2(z) will not completely eliminate the images 
created by upsampling that lie outside their half-band passbands.

Pass-Band Issues
Magnitude: For non-ideal filters the passbands are not perfectly flat and 
will change the shape of the signal’s DTFT magnitude in the passband.

Phase: Because PR allows a delay and a delay corresponds to a linear 
phase response (as a function of frequency) it seems natural to focus on 
linear phase filters – which puts our focus on FIR Filters.

Our Goal: Choose filters such that the aliasing & imaging 
errors cancel out!!! (Fixes the stop-band issues)

Then… make what is left combine to give the desired 
composite passband to achieve the PR condition.  

Let’s see how 
to do this 

mathematically
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Math Analysis of PR Requirements

Start at input & work toward  the output using z-transform methods:

Top Channel (Bottom Channel Similar):

1( ) ( ) ( )iY z H z X z=

1 2 1 2
1 1 1

1 2 1 2 1 2 1 2
1 1

1 1( ) ( ) ( )
2 2

1 ( ) ( ) ( ) ( )
2

W z Y z Y z

H z X z H z X z

= + −

⎡ ⎤= + − −⎣ ⎦

Filter

Down Sampling
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=
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Up Sampling

Filter

Now the output of the whole structure is:

1 2
ˆ ( ) ( ) ( )X z U z U z= + Summation
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Substitute results for Ui(z)   &    Group X(z) terms & group X(-z) terms…

[ ] [ ]1 1 2 2 1 1 2 2
1 1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

X z H z K z H z K z X z H z K z H z K z X z= + + − + − −

( )T zΔ
= ( )S zΔ

=

ˆ ( ) ( ) ( ) ( ) ( )X z T z X z S z X z= + −

Aliasing Term…
Don’t Want It!

:

( ) ( ) ( )
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We want to eliminate this “Aliasing Term”:   S(z) = 0

1 1 2 2( ) ( ) ( ) ( ) 0H z K z H z K z− + − =
Can cancel aliasing term by choosing:

2 1( ) ( )K z H z= − −

Doesn’t constrain the filters… but constrains the relationship between the K’s and H’s

1 2( ) ( )K z H z= − &

Note: Since…. H1(z) is lowpass      &       H2(z) is highpass…

we have:  K1(z)  is lowpass     &       K2(z) is highpass.

To see this:  K1(z) = H2(–z)   → K1(z) = H2(e jπ z) → K1(Ω) = H2(Ω +π )

Ωπ

H2(Ω)

-π π/2-π/2 Ωπ

K1(Ω) = H2(Ω +π )

-π π/2-π/2

Similarly: K2(z) = –H1(–z)   → K2(z) = –H1(e jπ z) → K2(Ω) = –H2(Ω +π )

2 1( ) ( )K H πΩ = − Ω+1 2( ) ( )K H πΩ = Ω+ &

“ACC”
Aliasing 

Cancellation 
Condition 
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Once the Ks are chosen this way we get

[ ]1 2 1 2

ˆ ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( )
2

Want this  for PRon

X z T z X z

H z H z H z H z X z

Cz−

=

= − − −

=

So the condition the Hs must meet for PR is: 

[ ]1 2 1 2( ) ( ) ( ) ( ) onH z H z H z H z Cz−− − − =

Note: the Ks are chosen to cancel aliasing

the Hs are chosen to give PR

Comment:  For compression we not only want to cancel aliasing but we often 
need to minimize it in each channel… which requires all filters to have sharp 
transition bands and low stop bands

Why do we need this?  Because in compression we often throw away some 
subbands (those having small energy)… and that upsets the balance used to 
cancel aliasing!

( )
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Focus of Design Process

So… our design process now focuses on designing the analysis filters 
H1(z) & H2(z) so that they meet ( ) for PR

Note: The aliasing cancelation puts no constraint on the design of the 
filters… it only says: “if the analysis filters are this… then the synthesis 
filters must be that”.

There are several design methods to get analysis filters H1(z) & H2(z) 
that give PR… various researchers have proposed these over the years.

We’ll look at two:

• Quadrature Mirror Filters (QMF)

• Power Symmetric Filters
– also called Conjugate Mirror Filters (CMF)
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Quadrature Mirror Filters (QMF)
These were proposed in 1977 by Esteban & Galand

Their definition of QMF leads to:

• Useful filters for filterbanks

• But… not able to give PR (except in a trivial case)

QMF Definition:  A pair of analysis filters are QMFs if 

2 1( ) ( )H z H z= −

QMF Condition
j

j j
z e

j

z e e

e

θ
π θ

θ π

±
=

±

− =

=
2 1( ) ( )H Hθ θ π= ±

Note: Once H1(z) is designed then the QMF condition nails down H2(z)… …and 
remember that K1(z) & K2(z) are also nailed down by the ACC

So… enforcing QMF & ACC reduces the design problem to only designing H1(z)
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QMF “Facts”
1. If H1(z) is linear phase, so is H2(z)

2. QMFs can only achieve PR if the h1[n] and h2[n] each have only 2 non-
zero “taps”

• E.g., h1[n] = [ 1 1]     or    h1[n] = [ 1 0 1]    or    h1[n] = [ 1 0 0 1]  etc.

• Note: 2-tap Filters Stink!  (See poor ½-band characteristics shown in 
Fig. 14.18)

3. If H1(z) has linear phase then T(z)… the analysis/synthesis total transfer 
function… also has linear phase.

• Note that this is necessary for PR, where we need

( ) ( )o on j nT z Cz T Ce− − Ω= ⇒ Ω =

Linear 
Phase

So… for QMF (w/ # taps > 2) we can’t get the amplitude part of PR:

real-valued
   & 0

( ) ( ) oj nT C e− Ω

≥

Ω = Ω Linear 
Phase

Amplitude 
Distortion Not PR!
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QMF Design Process (One Way to Do It)
1. Once we get a design for the Analysis Filters… the Hi(Ω)…

Choose the Synthesis Filters … the Ki(Ω)… to cancel aliasing

2 1( ) ( )K z H z= − −1 2( ) ( )K z H z= − & “ACC”

2. Eliminate Phase Distortion by constraining the Hi(Ω) to be 
linear phase FIR filters… which ensures that you get:

( ) ( ) oj nT C e− ΩΩ = Ω

Not really 
part of QMF 

design…
just what we 

do with 
them once 

we’ve 
designed 

them

[ ]1 2 1 2
1( ) ( ) ( ) ( ) ( )
2

T z H z H z H z H z= − − −

2 1( ) ( )H z H z= − “QMF”

3. Enforce the QMF relationship…

[ ] [ ]( )2 2
1 1

1( ) ( ) ( )
2

T z H z H z= − −
T(z) now 

depends only
on H1(z)!!
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4. Once you have a H1(Ω) that minimize Jα for your chosen α, 
then use it to generate all the other filters…

4. Design H1(Ω) to be a good LPF and to minimize the amplitude 
distortion of the end-to-end frequency response T(Ω).  This 
can be done numerically by minimizing

2 2
1 1

0

( ) ( ) (1 ) 1 ( )
s

J H d T d
π π

α α α
Ω

⎡ ⎤= Ω Ω + − − Ω Ω⎣ ⎦∫ ∫h

Stop-Band 
“Energy”

Amplitude Distortion Measure
Vector of 
Filter taps

See book 
“Numerical 
Recipes in 

C” for details 
on numerical 
minimization 

methods

α controls relative priority of 
the two goals… 0 ≤ α ≤ 1

2 1( ) ( )K z H z= − −

1 2 1( ) ( ) ( )K z H z H z= − =

2 1( ) ( )H z H z= −

“ACC”

“QMF”
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Power Symmetric FIR Filters (or Conjugate Mirror Filters)

This Does Allow PR!!!

We’ll get rid of aliasing the same way as before:

2 1( ) ( )K z H z= − −1 2( ) ( )K z H z= − & “ACC”
Error in Book in (14.75)

This gives S(z) = 0 (as before) and gives (as before)

[ ]1 2 1 2
1( ) ( ) ( ) ( ) ( )
2

T z H z H z H z H z= − − − Error in Book

Now… here is the new condition to use instead of QMF:

1
2 1( ) ( ) ( )NH z z H z− −= − −Only Use 

Odd N
where N = “Order” of the FIR filter H1(z)

“CMF Z-D”

Recall:  FIR has h1[n] = 0 for n ≠ 0, 1, 2, …, L-1

Length = L     Order = Length – 1 = L-1
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Can show that “CMF” is equivalent to

2 1[ ] ( 1) ( )nh n h N n= − − “CMF T-D”

For Order-N FIR with Odd N…

1 1 1 1 1

2 1 1 1 1

[ ] : [0] [1] [2] [ ]
[ ] : [ ] [ 1] [1] [0]

h n h h h h N
h n h N h N h h− − −

1 1
1 1 1 1

1( ) ( ) ( ) ( ) ( )
2

NT z z H z H z H z H z− − −⎡ ⎤= + − −⎣ ⎦

Using “CMF Z-D” in T(z) gives:

( )R zΔ=

[ ]1 ( ) ( )
2

Nz R z R z−= + −

Want = constant for PR
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Recall: 1. If H1(z) ↔ h1[n]  then H1(z-1) ↔ h1[-n]

2.  F(z)G(z) ↔ f [n]*g[n]

So… since   R(z) = H1(z)H1(z-1) 1 1

1 1
0

( ) [ ] [ ]* [ ]

[ ] [ ]
N

k

R z n h n h n

h k h k n

ρ

=

↔ = −

= +∑“Time Auto 
Correlation” of h1[n]

Note: ρ[n] = 0  for  |n| > N

ρ[-n] = ρ[n]   (even symmetry)

So… (recalling that N is odd)…
1 1 1

1 1 1

( ) [ ] [ 1] [1] [0] [1] [ ]

( ) [ ] [ 1] [1] [0] [1] [ ]

N N N

N N N

R z N z N z z z N z

R z N z N z z z N z

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

− − −

− − −

= + − + + + + + +

− = − + − − − + − + −

Cancel Cancel Cancel Cancel

Odd-Indexed Terms Cancel when R(z) & R(-z) are added
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( )
2,4,..., 1

( ) ( )  Only even-order terms

[0] [ ] n n

n N

R z R z

n z zρ ρ −

= −

+ − =

= + +∑

Want = constant for PR

, 0

[ ] 0, , 0

' ,

C n

n n even n

don t care n odd

ρ

=⎧
⎪⎪= ≠⎨
⎪
⎪⎩

Requirement for PR: ρ[2n] = C δ[n]

1 1
0

[2 ] [ ] [ 2 ] [ ]
N

k

n h k h k n C nρ δ
=

= + =∑
Time-Domain 
Requirement 

for PR
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To convert this into Freq. Domain: { } { }[2 ] [ ]n C nρ δ=F F

= CDTFT of 
decimated 
sequence

From F-D result for decimation: { } ( ) ( )

( ) ( )

2
2 2

1[2 ]
2

1
2

n R R

R R

πρ

π

Ω−Ω⎡ ⎤= +⎣ ⎦

= Ω + Ω−⎡ ⎤⎣ ⎦

F

Dummy 
Variable

2
Δ ΩΩ=

(A)

(B)

Now since R(z) = H1(z) H1(z-1)    The DTFT form is 1 1

*
1 1

( ) ( ) ( )

( ) ( )

R H H

H H

Ω = Ω −Ω

= Ω Ω
2

1( ) ( )R HΩ = Ω (C)

From (A) – (C) we get: 2 2
1 1( ) ( )H H CπΩ + Ω− =

Freq-Domain 
Requirement 

for PR
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To see this condition:

Ωππ/2-π/2-π 0

|H1(Ω)|2  + |H1(Ω – π)|2

|H1(Ω – π)|2|H1(Ω – π)|2 |H1(Ω)|2

Filters satisfying this are called…

“Power Symmetric Filters” or “Conjugate Mirror Filters”

For Design Details… See Books on Filter Banks
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Perfect Reconstruction for M Channels 
There are two ways to get PR for M > 2 Channels:

1. Extend all previous results to general M > 2 case

• Same basic ideas but much more complicated

• See books on Filter Banks

2. Cascade 2-Channel Stages…
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Analysis Side of 3-Stage, 8-Channel PR Filter Bank 
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↑2 K1(z)

K2(z)↑2

↑2

↑2

K1(z)

K2(z)

↑2 K2(z)

↑2 K2(z)

ˆ[ ]x n

Design a 2-Channel PR Filterbank… Get M Channel PR:

Gives PR… so can “remove”

Gives PR… so can “remove”
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After “removal” of Center:

↑2 K2(z)

↑2 K2(z)

ˆ[ ]x n

z-k

z-k

Gives PR…

So… a cascade followed by the reverse cascade “collapses” to 
give M-Channel PR
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What do the various channels in a cascaded analysis filter bank look like?

Can be shown that each channel has transfer function that looks like this (for 
the 3-stage case):

2 4( ) ( ) ( ) ( )channel i j kH z H z H z H z=

1 or 2
(1st Stage)

1 or 2
(2nd Stage)

1 or 2
(3rd Stage)

Hchannel(z) ↓23

The cascade method is useful but has a limitation:

If Hi(z) has order N, then Hi(z2) has order 2N, and Hi(z4) has order 4N…

… and then the cascade of them has order N + 2N + 4N

BUT…. You only have N degrees of freedom in “choosing all those”
N + 2N + 4N coefficients!!!

Book has 
error… uses 

product 
here instead 

of add
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Bit Allocation

Same ideas as for Bit Allocation for TC….

Each subband has its own quantizer and you want to allocate bits to 
the quantizers


