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Ch. 9 Scalar Quantization

Non-Uniform Quantizers
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Motivation

Instead of doing this…

We’d like to make the errors 
small in the regions where 
the signal is most likely

Recall UQ:
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Mid-Riser Non-UQ
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Lloyd-Max Quantizer
Recall for UQ optimization: 2min ( )qσΔ

Δ

Optimize only 
w.r.t. one variable!

Now more complex!  Need to optimize w.r.t. DBs: b1, b2, b3, … bM-1

RLs: y1, y2, y3, … yM
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<Recall for UQ it was the other way around… RLs were midpoints of DLs>
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Leads to two coupled equations… solved iteratively and numerically to give the 
“Lloyd-Max Quantizer” <See book for details on the algorithm>

14.27 dB 11.39 dB8-Level PDF-Opt. UQ:
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NUQs also suffer PDF Mismatch…

Adaptive
NUQ

Compander
w/ UQ

Ideas easily extended 
from Adaptive UQ ideas

We’ll discuss 
this further

Companding:

Companded Quantization - Overview
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Companded Quantization - Derivation

Goal: Choose compressor function C(x) to give robust performance
Bound the input range: |x| ≤ xmax

Assume M-Level UQ

If rate of UQ is high enough…
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Now look at MSQE: ( )
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Approximate PDF with step-wise function… this is accurate if M is large 
enough: “High-Rate Approximation”
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Approx. as integralLeave one here for 
integral differential
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The result is…
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Can we choose C(x) to make this variance independent of the shape of fX(x)???

Can we make the SQR entirely independent of  fX(x)????

Let’s see what happens if we choose C '(x) such that

max( ) xC x
xα

′ =α is a constant

Slope of C(x) 
• is always positive
• → 0 as |x| → ∞
• → ∞ @ x=0

Then…
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Choosing C(x) this way makes 

SQR constant regardless of 
PDF type and variance!!!

Can we actually find such a C(x)??



10

The form for function C(x) that has the correct derivative is

( )max( ) sgn( ) lnxC x A x x
α

= +

Eq. (9.52) in 3rd Ed. 
Text (and (8.52) in 2nd

Ed.) is not quite correct..

<A is a constant we can choose as A = 0>

Problem: Non-invertible…
e.g., if C(x) = 1, what was x?

Problem: Small |x| values 
mapped to large values

Fix Both Problems Linearly 
connect the two log functions
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There are two common functions used to enact this approximation:
μ-Law (used in N. America  & Japan phone systems) 

• A-Law (used in phone systems elsewhere)
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μ = 255 is the standard
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What SQR does μ-Law give?  To answer, use μ-Law function in Bennett Integral:
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For large μ:
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Constant!

Note the Trade-Off:

• Large μ improves robustness by de-emphasizing these terms

• But… large μ reduces the SQR level that is achieved
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