Ch. 9 Scalar Quantization

Non-Uniform Quantizers



Motivation
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w.r.t. one variabl

Lloyd-Max Quantizer Optimize only]

Recall for UQ optimization: min (75 (A)

A
DBs: b, b,, b, ... by,
RLs: yla y29 y39 cee yM

Now more complex! Need to optimize w.r.t:

b

M .
minimize Gg(bl,bz,...,bM_l,yl,yz,...yM):Zjb (x—y, )2 f, (x)dx
i=1

i—1

do? Note: only one term in this sun:>
9-0 remains after the derivative...
dy .

b;
j xf, (X)dx Centroid of PDF
Solve for y; to get: y, = b, the interval

J'bb_j f. (x)dx

J

Midpoint between
dO'2 .+ V. Midpoint
Next... set 90 ‘ b. = yj+1 yJ RLs

db, j 2

First... set

<Recall for UQ it was the other way around... RLs were midpoints of DLs>



Leads to two coupled equations... solved iteratively and numerically to give the

“Lloyd-Max Quantizer”

<See book for details on the algorithm>

b;
xf, (X)dx N
) e
Yi =, b, =
x (X)
TABLE 9.6 Quantizer boundary and reconstruction levels for nenvniferm
Gavssian and Laplacian guantizers.
Gaussian Laplacian
Levels b, ¥ SNR b, 7 SNR
4 0.0 0.4528 0.0 0.4196
0.9816 1.510 9.3dB 1.1269 1.8340 7.54dB
6 0.0 0.3177 0.0 0.2998
0.6589 1.0 0.7195 1.1393
1.447 1.894 12.41 dB 1.8464 2.5535 10.51dB
8 0.0 0.2451 0.0 0.2334
0.7560 0.6812 0.5332 0.8330
1.050 13440 1.2527 L6725 e,
1.748 2.1520 14.62dB 2.3796 3.0867 : 12.64dB
8-Level PDF-Opt. UQ: :14.27 dB - 11.39dB :

...........................

..........................



Companded Quantization - Overview

NUQs also suffer PDF Mismatch...

Ideas easily extendedj\
from Adaptive UQ ide%/'
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Companded Quantization - Derivation

Goal: Choose compressor function C(X) to give robust performance

-

Bound the input range: [X| < X

Assume M-Level UQ

Uniform

If rate of UQ 1s high enough...

dC(0| _C(b)-Clb,,)

X X=Yk Ak -X

max

_ 2Xmax/|v|

= A k
X max
2X \ /

Solve for A,: |A, = I\/IC'IZa; ) (%)
K




Now look at MSQE: op —Zj X yl) f (X)dX

Approximate PDF with step-wise function.
enough: “High-Rate Approximation”

.. this 1s accurate 1f M 1s large

> 1
i=1 - 12 =l |
_ Ai G2 Ai)=Ai3 /1 2 Known from (%)

Ry 2 XM (y,)
X max [ Ai
st holiens) 2 S

J
eave one té}(i Approx as integral
ntegral differential




2 ~ __max

O “The Bennett Integral”
q 3M Xmax [C (X)]

The result 1s... 2
X Xoax T (X
j « (X) dx

Can we choose C(x) to make this variance independent of the shape of f,(x)???

Can we make the SQR entirely independent of f,(x)????

Let’s see what happens if we choose C'(X) such that Slope of C(X)
X . * is always positive
C'(x) = *—0as x| —» o
‘ ‘ * — o0 @ x=0

o 1S a constant

2

Then... o~ ¢ Jmax x> f (X)dX — MSQE N G)%

T3M? )
O—)f 3IM 2 Choosing C(x) this way makes
‘ SQR=—~— SQR constant regardless of
9 ¢« PDF type and variance!!!

Can we actually find such a C(x)??



The form for function C(X) that has the correct derivative is Eq. (9.52) in 3 Ed.

Text (and (8.52) in 2nd

Za —sgn(x)In (‘ XD Ed.) is not quite correct..

C(x)=A+2

<A IS a constant we can choose as A = 0>
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There are two common functions used to enact this approximation:

u-Law (used in N. America & Japan phone systems)

ln(1+ ||)
C(X) = X In(1+ 2

u =255 is the standard

sgn(X)

« A-Law (used in phone systems elsewhere)

r

A‘X‘ sgn(X) 0< ‘X‘
In(1+A) ’ .
C(X) =+
" 1+1 (A“)Sgn(x) 1 < ‘X‘ <
" In (1+A) A X
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What SQR does p-Law give? To answer, use p-Law function in Bennett Integral:

3M? 1 - X = -
SQR = . _ X=——  [}|=E{x|]
[In(1+ )] - 2|%] L] Xinax
po; oy
N 7
Y
2
For large n:[SQR = M —| Constant!
[In(1+ 20)]

Note the Trade-Off:

 Large u improves robustness by de-emphasizing these terms

 But... large u reduces the SQR level that is achieved
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