Ch. 9 Scalar Quantization

Non-Uniform Quantizers

<Recall for UQ it was the other way around... RLs were midpoints of DLs>

Leads to two coupled equations... solved <u>iteratively</u> and <u>numerically</u> to give the "Lloyd-Max Quantizer" *<See book for details on the algorithm>*

TABLE 9.6 Quantizer boundary and reconstruction levels for nonuniform Gaussian and Laplacian quantizers.

Levels	b_i	Gaussian _{yi}	SNR	b_i	Laplacian y _i	SNR
4	0.0 0.9816	0.4528 1.510	9.3 dB	0.0 1.1269	0.4196 1.8340	7.54 dB
6	0.0 0.6589 1.447	0.3177 1.0 1.894	12.41 dB	0.0 0.7195 1.8464	0.2998 1.1393 2.5535	10.51 dB
8	0.0 0.7560 1.050	0.2451 0.6812 1.3440 2.1520	14.62 dB	0.0 0.5332 1.2527 2.3796	0.2334 0.8330 1.6725 3.0867	12 64 dB
8-Level PDF-Opt. UQ:			14.02 dB	2.5790	5.0807	12.04 dB

Companded Quantization - Overview

Companded Quantization - Derivation

<u>Goal</u>: Choose compressor function C(x) to give robust performance Bound the input range: $|x| \le x_{max}$

 $x_{\rm max}$ $c(b_k)$ Assume M-Level UQ Jniform $c(b_{k-1})$ If rate of UQ is high enough... $\frac{dC(x)}{dx}\Big|_{x=y_k} \approx \frac{C(b_k) - C(b_{k-1})}{\Delta_k}$ $-x_{\max}$ Δ_k $=\frac{2x_{\max}/M}{\Delta_k}$ b_{k-1} b_k $C'(y_k)$ $-x_{\max}$ Solve for Δ_k : $\Delta_k = \frac{2x_{\max}}{MC'(y_k)}$ (★)

 $x_{\rm max}$

Now look at MSQE:
$$\sigma_q^2 = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x - y_i)^2 f_X(x) dx$$

Approximate PDF with step-wise function... this is accurate if *M* is large enough: "*High-Rate Approximation*"

The result is...

$$\sigma_q^2 \approx \frac{x_{\max}^2}{3M^2} \int_{-x_{\max}}^{x_{\max}} \frac{f_X(x)}{\left[C'(x)\right]^2} dx$$

"The Bennett Integral"

Can we choose C(x) to make this variance independent of the shape of $f_X(x)$??? Can we make the SQR entirely independent of $f_X(x)$???

Let's see what happens if we choose C'(x) such that Slope of C(x)

$$\alpha \text{ is a constant} \qquad C'(x) = \frac{x_{\max}}{\alpha |x|} \qquad \begin{array}{l} \cdot \text{ is always positive} \\ \cdot \to 0 \text{ as } |x| \to \infty \\ \cdot \to \infty @ x=0 \end{array}$$

$$Then \dots \qquad \sigma_q^2 \approx \frac{\alpha^2}{3M^2} \int_{-x_{\max}}^{x_{\max}} x^2 f_x(x) dx \qquad \Rightarrow MSQE \sim \sigma_x^2$$

$$=\sigma_x^2$$

$$SQR = \frac{\sigma_x^2}{\sigma_q^2} \approx \frac{3M^2}{\alpha^2}$$

$$Choosing C(x) \text{ this way makes} \text{ SQR constant regardless of PDF type and variance!!!}$$

Can we actually <u>find</u> such a C(x)??

The form for function C(x) that has the correct derivative is $C(x) = A + \frac{x_{\text{max}}}{\alpha} \operatorname{sgn}(x) \ln(|x|)$ Eq. (9.52) in 3rd Ed. Text (and (8.52) in 2nd Ed.) is not quite correct..

There are two common functions used to enact this approximation: <u> μ -Law</u> (used in N. America & Japan phone systems)

$$C(x) = x_{\max} \frac{\ln\left(1 + \mu \frac{|x|}{x_{\max}}\right)}{\ln\left(1 + \mu\right)} \operatorname{sgn}(x)$$

 $\mu = 255$ is the standard

• <u>A-Law</u> (used in phone systems elsewhere)

$$C(x) = \begin{cases} \frac{A|x|}{\ln(1+A)} \operatorname{sgn}(x), & 0 \le \frac{|x|}{x_{\max}} \le \frac{1}{A} \\ \frac{1+\ln\left(\frac{A|x|}{x_{\max}}\right)}{\ln(1+A)} \operatorname{sgn}(x), & \frac{1}{A} \le \frac{|x|}{x_{\max}} \le 1 \end{cases}$$

What SQR does µ-Law give? To answer, use µ-Law function in Bennett Integral:

- \bullet Large μ improves robustness by de-emphasizing these terms
- \bullet But... large μ reduces the SQR level that is achieved

Figure 11.15 Predicted and measured SNR for a µ-law quantizer.