Ch. 2 Math Preliminaries for Lossless Compression

Section 2.4 Coding

Some General Considerations

Definition: An Instantaneous Code maps each symbol into a codeword

<u>Ex. 1</u>:

$$a_1 \rightarrow 0$$

$$a_2 \rightarrow 1$$

$$a_3 \rightarrow 00$$

$$a_4 \rightarrow 11$$

Notation: $a_i \rightarrow \phi(a_i)$

For Ex. 1: $\phi(a_3) = 00$

This code has a tree structure:

 a_1

 a_2

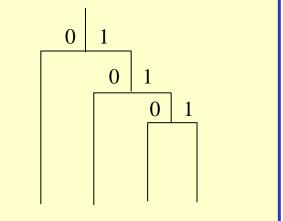
Ex. 2:

$$a_1 \rightarrow 0$$

$$a_2 \rightarrow 10$$

$$a_3 \rightarrow 110$$

$$a_{4} \rightarrow 111$$



 a_3

What characteristics must a code ϕ have?

Unambiguous (UA): For $a_i \neq a_j$, $\phi(a_i) \neq \phi(a_j)$

The codes in Ex. 1 and Ex.2 each are UA

Is UA enough?? No! Consider Ex. 1 coding two different source sequences:

$$a_1 \ a_2 \ a_1 \ a_1 \ a_2 \ a_3 \ a_4$$
 $a_1 \ a_2 \ a_3 \ a_4$
 $a_1 \ a_2 \ a_1 \ a_1 \ a_2 \ a_2$

They each get coded to the bit stream: 0 1 0 0 1 1

$$\overrightarrow{a_1} \ \overrightarrow{a_2} \ \overrightarrow{a_3} \ \overrightarrow{a_4}$$

Can't <u>uniquely decode</u> this bit <u>sequence!!</u>

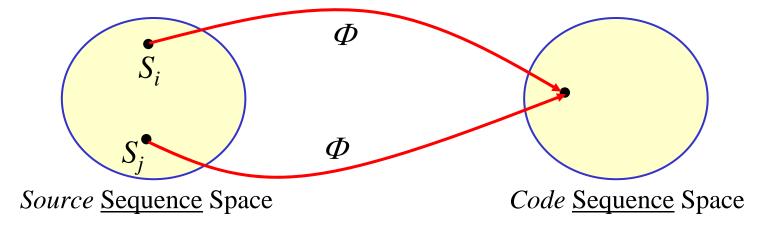
So... UA guarantees that can decode each symbol by itself but not necessarily a <u>stream</u> of coded symbols!!

Define mapping of sequences under code ϕ

$$\Phi(\underbrace{a_{i_1} \ a_{i_2} \ a_{i_3} \ a_{i_4} \dots a_{i_N}}_{S_i}) = \phi(a_{i_1}) \ \phi(a_{i_2}) \ \phi(a_{i_3}) \ \phi(a_{i_4}) \dots \phi(a_{i_N})$$

Concatenation of code words

Don't want two sequences of symbols to map to the same bit stream:

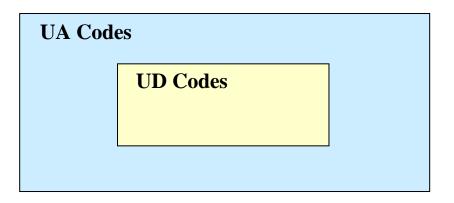


Leads to need for...

<u>Uniquely Decodable (UD)</u>: Let $S_i \& S_j$ be two sequences from the same source (not necessarily of the same length).

Then code ϕ is UD if the only way that $\Phi(S_i) = \Phi(S_j)$ is for $S_i \neq S_j$

Does UD → UA??? YES!

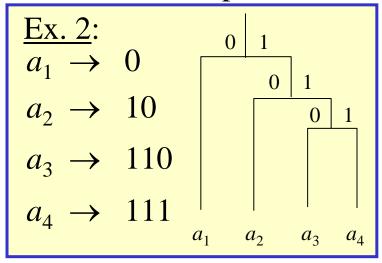


Then UD is enough??? YES!

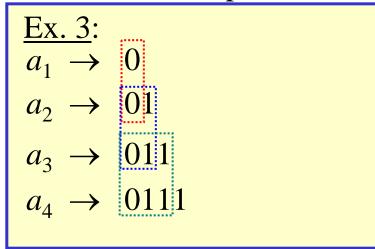
But in practice it is helpful to restrict to a subset of UD codes called "Prefix Codes".

Prefix Code: A UD code in which no codeword may be the prefix of another codeword.

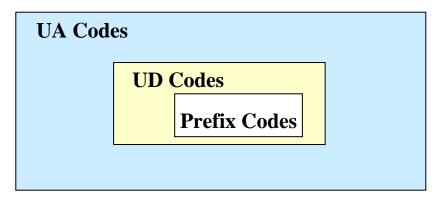
Ex. 2 above is a prefix code:



This code is not prefix



Does Prefix → UD??? YES!



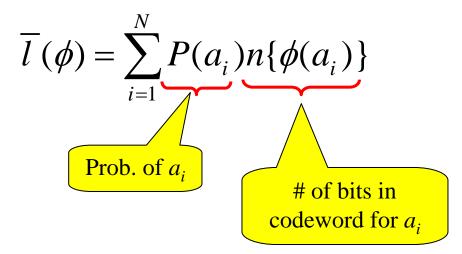
Do we lose anything by restricting to prefix codes?

No... as we'll see later!

How do we compare various UD codes???

(i.e., What is our measure of performance?)

Average Code Length: Info theory says to use average code length per symbol... For a source with symbols $a_1, a_2, \ldots a_N$ and a code ϕ the average code length is define by



Optimum Code: The UD code with the smallest average code length

Example: For $P(a_1) = \frac{1}{2}$ $P(a_2) = \frac{1}{4}$ $P(a_3) = P(a_3) = 1/8$ This source has a entropy of 1.75 bits

Here are three possible codes and their average lengths:

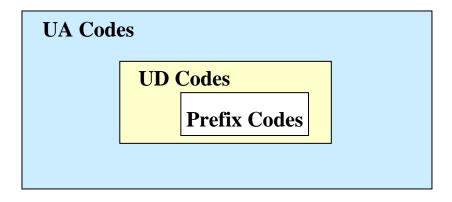
Symbol	UA Non-UD Code	Prefix Code	UD Non-Prefix	Info of symbol
	(Ex. 1)	(Ex. 2)	(Ex. 3)	$-\log_2[P(a_i)]$
a_1	0	0	0	1
a_2	1	10	01	2
a_3	00	110	011	3
a_4	11	111	0111	3
Avg. Length:	1.25 bits	1.75 bits	1.875 bits	H(S) = 1.75 bits
Length Length Length larger				

Length Length Length large better than H(S)!! equals H(S) than H(S)

BUT... not usable because it is Non-UD

Prefix Code gives smallest usable code!!

Info Theory Says: Optimum Code is always a prefix code!!



The proof of this uses the Kraft-McMillan Inequality which we'll discuss next.

How do we find the optimum prefix code?

(Note: not just any prefix code will be optimum!) We'll discuss this later....

2.4.3 Kraft-McMillan Inequality

This result tells us that an optimal code can <u>always</u> be chosen to be a prefix code!!! The Theorem has 2 parts....

Theorem Part #1: Let C be a code having N codewords... with codeword lengths of $l_1, l_2, l_3, ..., l_N$

If C is uniquely decodable, then $\sum_{i=1}^{N} 2^{-l_i} \le 1$

For notation: $K(C) \stackrel{\Delta}{=} \sum_{i=1}^{N} 2^{-l_i}$

Proof: Here is the main idea used in the proof... If K(C) > 1, then $[K(C)]^n$ grows exponentially w.r.t. n

So... if we can show that $[K(C)]^n$ grows, say, no more than linearly we have our proof. Thus we need to show that

$$[K(C)]^n \le \alpha n + \beta$$
Some constants

For arbitrary integer
$$n$$
:
$$\left[K(C)\right]^n = \left[\sum_{i=1}^N 2^{-l_i}\right]^n = \left[\sum_{i_1=1}^N 2^{-l_{i_1}}\right] \left[\sum_{i_2=1}^N 2^{-l_{i_2}}\right] \cdots \left[\sum_{i_n=1}^N 2^{-l_{i_n}}\right]$$
Note use of different dummy variables!

$$=\sum_{i_1=1}^{N}\sum_{i_2=1}^{N}\cdots\sum_{i_n=1}^{N}2^{-\left(l_{i_1}+l_{i_2}+\cdots+l_{i_n}\right)}$$

Note that this exponent is nothing more than the length of a sequence of selected codewords of code C... Let this be $L(i_1, i_2, i_3, ..., i_n)$ and we can re-write (\star) as

$$[K(C)]^{n} = \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{n}=1}^{N} 2^{-L(i_{1},i_{2},\cdots,i_{n})} = 2^{-L(1,1,\cdots,1)} + 2^{-L(1,1,\cdots,2)} + \cdots + 2^{-L(N,N,\cdots,N)}$$

The smallest $L(i_1, i_2, i_3, ..., i_n)$ can be is n (when each codeword in the sequence is 1 bit long)

The longest $L(i_1, i_2, i_3, ..., i_n)$ can be is nl where l is the longest codeword in C.

So then:
$$[K(C)]^n = 2^{-L(1,1,\dots,1)} + 2^{-L(1,1,\dots,2)} + \dots + 2^{-L(N,N,\dots,N)}$$

= $A_n 2^{-n} + A_{n+1} 2^{-(n+1)} + \dots + A_{nl} 2^{-(nl)}$

$$(\bigstar \bigstar)$$
 $[K(C)]^n = \sum_{k=n}^{nl} A_k 2^{-k}$ $A_k = \# \text{ times } L(i_1, i_2, i_3, ..., i_n) = n$

$$A_k = \# \text{ times } L(i_1, i_2, i_3, ..., i_n) = n$$

Remember that we are trying to establish this bound:

$$\left[K(C)\right]^n \le \alpha n + \beta$$

we don't need the A_k values exactly... just need a good upper bound on them!

First: The # of k-bit binary sequences = 2^k

The "If" part of the theorem!

<u>Second</u>: If our code is <u>uniquely</u> decodable, then each of these <u>can</u> represent one and only one sequence of codewords whose total length = k bits

There may be some in the 2^k that are not valid

$$A_k \leq 2^k$$

We can now use this bound in $(\star \star)$ to get a bound on $[K(C)]^n$:

$$[K(C)]^{n} = \sum_{k=n}^{nl} A_{k} 2^{-k} \le \sum_{k=n}^{nl} 2^{k} 2^{-k} = nl - n + 1$$

Thus... $[K(C)]^n$ grows slower than exponentially

Hence... $K(C) \le 1$ < End of Proof>

Part #1 says: If code with lengths $\{l_1, l_2, \dots l_N\}$ is uniquely decodable, then the lengths satisfy the inequality

Part #2 says: Given lengths $\{l_1, l_2, \dots l_N\}$ that satisfy the inequality, then we can always find a prefix code w/ these lengths

Theorem Part #2: Given integers $\{l_1, l_2, \dots l_N\}$ such that $\sum_{i=1}^{N} 2^{-l_i} \le 1$ We can always find a <u>prefix</u> code with lengths $\{l_1, l_2, \dots l_N\}$

<u>Proof</u>: This is a "Proof by Construction": we will show how to construct the desired prefix code. "WLOG".... Assume that $l_1 \le l_2 \le ... \le l_N$

Define the numbers $w_1, w_2, ..., w_N$ using

$$w_1 = 0$$

$$w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i}, \quad j > 1$$

Think of this in terms of a binary representation (see next slide for an example)

Example of Creating the W_i

$$\begin{split} l_1 &= 1 \quad l_2 = 3 \quad l_3 = 3 \quad l_4 = 5 \quad l_5 = 5 \qquad \sum_{i=1}^5 2^{-l_i} = 0.8125 < 1 \\ w_1 &= 0 \\ w_2 &= \sum_{i=1}^1 2^{l_2 - l_i} = 2^{3-1} = 4 = 100_2 \\ w_3 &= \sum_{i=1}^2 2^{l_3 - l_i} = 2^{3-1} + 2^{3-3} = 5 = 101_2 \\ w_4 &= \sum_{i=1}^3 2^{l_4 - l_i} = 2^{5-1} + 2^{5-3} + 2^{5-3} = 24 = 11000_2 \\ w_5 &= \sum_{i=1}^4 2^{l_5 - l_i} = 2^{5-1} + 2^{5-3} + 2^{5-3} + 2^{5-5} = 25 = 11001_2 \end{split}$$

$$w_3 = \sum_{i=1}^{2} 2^{l_3 - l_i} = 2^{3-1} + 2^{3-3} = 5 = 101_2$$

$$w_4 = \sum_{i=1}^{3} 2^{l_4 - l_i} = 2^{5-1} + 2^{5-3} + 2^{5-3} = 24 = 11000_2$$

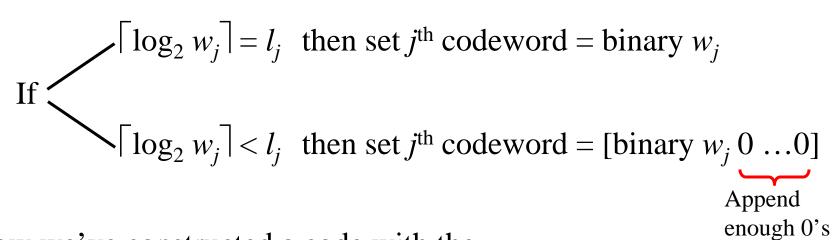
$$w_5 = \sum_{i=1}^{4} 2^{l_5 - l_i} = 2^{5-1} + 2^{5-3} + 2^{5-3} + 2^{5-5} = 25 = 11001_2$$

For j > 1, the binary representation of w_i uses $|\log_2 w_i|$ bits

Easy to show (see textbook) that: "# bits in w_i " $\leq l_i \Rightarrow \lceil \log_2 w_i \rceil \leq l_i$, for $i \geq 1$

This is where we use that
$$\sum_{i=1}^{N} 2^{-l_i} \le 1$$

Now use the binary reps of the w_j to construct the prefix codewords having lengths $\{l_1, l_2, \dots, l_N\}$



So now we've constructed a code with the desired lengths... Is it a <u>prefix</u> code???

Show it is by using contradiction... Assume that it is NOT a prefix code and show that it leads to something that contradicts a known condition...

to get l_i

total bits

Suppose that the constructed code is <u>not</u> prefix... thus, for some j < k the codeword C_i is a prefix of codeword C_k ...

Right-Shift & Chop
$$w_k = w_j$$

$$\frac{w_k}{2^{l_k - l_j}} = w_j \qquad (\bigstar)$$
There is always a "But" in a proof by contradiction!

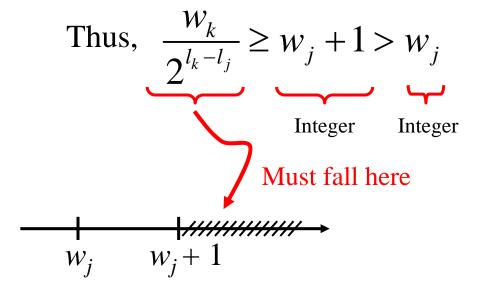
So see if (\star) contradicts this required condition:

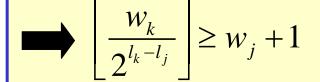
Put this w_k into (\star) and show that something goes wrong

$$(*) \longrightarrow \frac{w_k}{2^{l_k - l_j}} = \sum_{i=1}^{k-1} 2^{l_j - l_i}$$

$$= \sum_{i=1}^{j-1} 2^{l_j - l_i} + \sum_{i=j}^{k-1} 2^{l_j - l_i}$$

$$= w_j + 2^0 + \sum_{i=j+1}^{k-1} 2^{l_j - l_i} \ge w_j + 1$$





...which contradicts (★)

So code is prefix!

<End of Proof>

Meaning of Kraft-McMillan Theorem

Question: So what do these two parts of the theorem tell us??? **Answer**: **Shortest Avg. Length**

- We are looking for the optimal UD code.
- Once we find it we know its codeword lengths satisfy the K-M inequality
 - Part #1 of the theorem tells us that!!!
- Once we have such lengths (that satisfy the K-M ineq.) we can *construct* a prefix code having those <u>optimal</u> lengths...
 - This is guaranteed by Part #2 of the theorem
 - This gives us a prefix code that is optimal!!!

So... everytime we find the optimal code, if it isn't already prefix we can replace it with a prefix code that is just as optimal!

Can focus on finding optimal prefix codes... w/o worrying that we could find a better code that is not prefix!