13.4 Scalar Kalman Filter

Data Model

To derive the Kalman filter we need the data model:

s[n] = as[n-1] + u[n] < State Equation > x[n] = s[n] + w[n] < Observation Equation >

Assumptions

- 1. u[n] is zero mean Gaussian, White, $E\{u^2[n]\} = \sigma_u^2$
- 2. w[n] is zero mean Gaussian, White, $E\{w^2[n]\} = \sigma_n^2$ Can vary
- 3. The initial state is $s[-1] \sim N(\mu_s, \sigma_s^2)$
- 4. u[n], w[n], and s[-1] are all independent of each other

To simplify the derivation: let $\mu_s = 0$ (we'll account for this later)

with time

Goal and Two Properties

Goal: Recursively compute $\hat{s}[n \mid n] = E\{s[n] \mid x[0], x[1], ..., x[n]\}$ **Notation**: **X**[n] is set of all observations **x**[n] is a single vector-observation

Two Properties We Need

1. For the jointly Gaussian case, the MMSE estimator of zero mean based on two <u>uncorrelated</u> data vectors $\mathbf{x}_1 \& \mathbf{x}_2$ is (see p. 350 of text) $\hat{\boldsymbol{\theta}} = E[\boldsymbol{\theta} | \mathbf{x}_1 \mathbf{x}_2] = E[\boldsymbol{\theta} | \mathbf{x}_2] + E[\boldsymbol{\theta} | \mathbf{x}_2]$

$$\theta = E\{\theta \mid \mathbf{x}_1, \mathbf{x}_2\} = E\{\theta \mid \mathbf{x}_1\} + E\{\theta \mid \mathbf{x}_2\}$$

2. If $\theta = \theta_1 + \theta_2$ then the MSEE estimator is

$$\hat{\theta} = E\{\theta \mid \mathbf{x}\} = E\{\theta_1 + \theta_2 \mid \mathbf{x}\} = E\{\theta_1 \mid \mathbf{x}\} + E\{\theta_2 \mid \mathbf{x}\}$$

(a result of the linearity of $E\{.\}$ operator)

Derivation of Scalar Kalman Filter

Recall from Section 12.6... Innovation: $\tilde{x}[n] = x[n] - \hat{x}[n | n-1]$

By MMSE Orthogonality Principle

$$E\big\{\widetilde{x}[n]\mathbf{X}[n-1]\big\} = \mathbf{0}$$

MMSE estimate of x[n] given X[n-1] (prediction!!)

 $\tilde{x}[n]$ is part of x[n] that is uncorrelated with the previous data

Now note: X[n] is equivalent to $\{X[n-1], \tilde{x}[n]\}$ Why? Because we can get get X[n] from it as follows:

$$\begin{bmatrix} \mathbf{X}[n-1] \\ \widetilde{x}[n] \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{X}[n-1] \\ x[n] \end{bmatrix} = \mathbf{X}[n]$$
$$\mathbf{X}[n] = \widetilde{x}[n] + \sum_{\substack{k=0 \\ \widehat{x}[n|n-1]}}^{n-1} a_k x[k]$$

What have we done so far?

• Have shown that $\mathbf{X}[n] \leftrightarrow \{\mathbf{X}[n-1], \widetilde{x}[n]\}$

uncorrelated

- \Rightarrow Have split current data set into 2 parts:
 - 1. Old data
 - 2. Uncorrelated part of new data ("just the new facts")

$$\Rightarrow \hat{s}[n|n] = E\{s[n] | \mathbf{X}[n]\} = E\{s[n] | \mathbf{X}[n-1], \tilde{x}[n]\} \longrightarrow \text{Because of this}$$

So what??!! Well... can now exploit Property #1!!

$$\Rightarrow \hat{s}[n | n] = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$\stackrel{\Delta}{=} \hat{s}[n | n-1]$$

$$prediction of s[n]$$
based on past data
$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \mathbf{X}[n-1]\} + E\{s[n] | \tilde{x}[n]\}$$

$$I = E\{s[n] | \mathbf{X}[n-1]\} + E\{s[$$

Look at Prediction Term: $\hat{s}[n | n-1]$

<u>Use the Dynamical Model</u>... it is the key to prediction because it tells us how the state should progress from instant to instant

$$\hat{s}[n | n-1] = E\{s[n] | \mathbf{X}[n-1]\} = E\{as[n-1] + u[n] | \mathbf{X}[n-1]\}$$

Now use Property #2:

$$\hat{s}[n | n-1] = a E \{ s[n-1] | \mathbf{X}[n-1] \} + E \{ u[n] | \mathbf{X}[n-1] \}$$

$$= \hat{s}[n-1|n-1] = E \{ u[n] \} = 0$$
By Definition
By Definition

By independence of u[n] & **X**[n-1]... See bottom of p. 433 in textbook.

$$\hat{s}[n | n - 1] = a\hat{s}[n - 1 | n - 1]$$

The <u>Dynamical Model</u> provides the update from estimate to prediction!!

Look at Update Term: $E\{s[n] | \tilde{x}[n]\}$

Use the form for the Gaussian MMSE estimate:

$$E\{s[n] | \tilde{x}[n]\} = \begin{bmatrix} E\{s[n]\tilde{x}[n]\} \\ E\{\tilde{x}^{2}[n]\} \end{bmatrix} \tilde{x}[n]$$

$$\stackrel{\Delta}{=} k[n]$$
So... $E\{s[n] | \tilde{x}[n]\} = k[n](x[n] - \hat{x}[n | n - 1])$
by Prop. #2 = $\hat{s}[n | n - 1] + \hat{w}[n | n - 1]$
Prediction Shows Up Again!!!
Prediction Shows Up Again!!!
$$\stackrel{Dut \text{ these Results Together:}}{\hat{s}[n | n] = \hat{s}[n | n - 1] + k[n][x[n] + \hat{s}[n | n - 1]]}$$
How to get the gain?
$$f(x[n] = \hat{s}[n] =$$

Look at the Gain Term:

Need two properties...

A. $E\{s[n](x[n] - \hat{s}[n | n-1])\} = E\{(s[n] - \hat{s}[n | n-1])(x[n] - \hat{s}[n | n-1])\}$

B. $E\{w[n](s[n] - \hat{s}[n | n - 1])\} = 0$

" <u>proof</u>"

• w[n] is the <u>measurement</u> noise and by assumption is indep. of the "dynamical driving noise" u[n] and s[-1]... In other words: w[n] is indep. of everything dynamical... So $E\{w[n]s[n]\} = 0$

• $\hat{s}[n | n-1]$ is based on past data, which include $\{w[0], \dots, w[n-1]\}$, and since the measurement noise has indep. samples we get $\hat{s}[n | n-1] \perp w[n]$

This gives a form for the gain:

In the Kalman filter the <u>prediction</u> acts like the <u>prior information</u> about the <u>state at time n</u> <u>before we observe</u> the data at time n

Look at the Prediction MSE Term:

But now we need to know how to find M[n|n-1]!!!

$$M[n|n-1] = E\left\{ [s[n] - \hat{s}[n|n-1]^2 \right\}$$

$$= E\left\{ [as[n-1] + u[n] - a\hat{s}[n-1|n-1]]^2 \right\}$$

$$= E\left\{ [a(s[n-1] - \hat{s}[n-1|n-1]) + u[n]]^2 \right\}$$
Est. Error at previous time

$$M[n|n-1] = a^2 M[n-1|n-1] + \sigma_u^2$$

Why are the cross-terms zero? Two parts:

- 1. s[n-1] depends on $\{u[0] \dots u[n-1], s[-1]\}$, which are indep. of u[n]
- 2. $\hat{s}[n-1|n-1]$ depends on $\{s[0]+w[0] \dots s[n-1]+w[n-1]\}$, which are indep. of u[n]

Look at a Recursion for MSE Term: M[n|n]

By def.:
$$M[n|n] = E\left\{ [s[n] - \hat{s}[n|n]]^2 \right\} = E\left\{ [s[n] - \hat{s}[n|n-1] - k[n](x[n] - \hat{s}[n|n-1])]^2 \right\}$$

Term A Term B
Now we'll get three terms:
 $E\{A^2\}, E\{AB\}, E\{B^2\}$
 $E\left\{A^2\right\} = M[n|n-1]$ by definition
 $2E\{AB\} = -2k[n]E\{[s[n] - \hat{s}[n|n-1]][x[n] - \hat{s}[n|n-1]]\}$
 $= -2k[n]M[n|n-1]$ from (\star)... is num. $k[n]$
 $E\left\{B^2\right\} = k^2[n]E\left\{ [x[n] - \hat{s}[n|n-1]]^2 \right\}$
 $= k[n][Den. of k[n]]$ from (\star)... is den. $k[n]$
 $= k[n][Num. of k[n]] = k[n]M[n|n-1]$
Recall: $k[n] = \frac{M[n|n-1]}{\sigma_n^2 + M[n|n-1]}$

11

So this gives...

M[n | n] = M[n | n-1] - 2k[n]M[n | n-1] + k[n]M[n | n-1]

$$M[n|n] = (1 - k[n])M[n|n-1]$$

Putting all of these results together gives some <u>very</u> simple equations to iterate... Called the Kalman Filter

We just derived the form for Scalar State & Scalar Observation. On the next three charts we give the Kalman Filter equations for:

- Scalar State & Scalar Observation
- Vector State & Scalar Observation
- Vector State & Vector Observation

Kalman Filter: Scalar State & Scalar Observation

<u>State Model</u> :	$s[n] = as[n-1] + u[n] \qquad u$	$u[n]$ WGN; WSS; ~ $N(0, \sigma_u^2)$
Observation Model :	$x[n] = s[n] + w[n] \qquad \qquad$	[<i>n</i>] WGN; ~ $N(0, \sigma_n^2)$ with <i>n</i>
Initialization:	$\hat{s}[-1 -1] = E\{s[-1]\} = \mu_s$ $M[-1 -1] = E\{(s[-1]\} - \hat{s}[-1]\} - \hat{s}[-1]\} - \hat{s}[-1]\} - \hat{s}[-1]$	$\underline{\text{Must Know}}: \mu_s, \sigma_s^2, a, \sigma_u^2, \sigma_n^2$ $-1 -1])^2 \} = \sigma_s^2$
Prediction :	$\hat{s}[n \mid n-1] = a\hat{s}[n-1 \mid n-1]$	
Pred. MSE:	$M[n n-1] = a^2 M[n-1 n$	$-1]+\sigma_u^2$
<u>Kalman Gain</u> :	$K[n] = \frac{M[n \mid n-1]}{\sigma_n^2 + M[n \mid n-1]}$	
<u>Update</u> :	$\hat{s}[n \mid n] = \hat{s}[n \mid n-1] + K[n]$	$(x[n] - \hat{s}[n \mid n-1])$
Est. MSE:	$M[n \mid n] = (1 - K[n])M[n \mid n]$	n-1]

Kalman Filter: Vector State & Scalar Observation		
State Model:	$[n] = \mathbf{As}[n-1] + \mathbf{Bu}[n] \mathbf{s} \ p \times 1; \mathbf{A} \ p \times p; \mathbf{B} \ p \times r; \mathbf{u} \sim N(0, \mathbf{Q}) \ r \times 1$	
Observation Model : <i>x</i>	$[n] = \mathbf{h}^{T}[n]\mathbf{s}[n] + w[n]; \mathbf{h}^{T}[n] p \times 1 w[n] \text{ WGN}; \sim N(0, \sigma_{n}^{2})$	
Initialization:	$\hat{\mathbf{s}}[-1 -1] = E\{\mathbf{s}[-1]\} = \boldsymbol{\mu}_s$ <u>Must Know</u> : $\boldsymbol{\mu}_s$, \mathbf{C}_s , \mathbf{A} , \mathbf{B} , \mathbf{h} , \mathbf{Q} , σ_n^2	
	$\mathbf{M}[-1 -1] = E\{(\mathbf{s}[-1]) - \hat{\mathbf{s}}[-1 -1])(\mathbf{s}[-1]) - \hat{\mathbf{s}}[-1 -1])^T\} = \mathbf{C}_s$	
Prediction :	$\hat{\mathbf{s}}[n n-1] = \mathbf{A}\hat{\mathbf{s}}[n-1 n-1]$	
<u>Pred. MSE (<i>p</i>×<i>p</i>)</u> :	$\mathbf{M}[n \mid n-1] = \mathbf{A}\mathbf{M}[n-1 \mid n-1]\mathbf{A}^{T} + \mathbf{B}\mathbf{Q}\mathbf{B}^{T}$	
<u>Kalman Gain (p×1)</u> :	$\mathbf{K}[n] = \frac{\mathbf{M}[n \mid n-1]\mathbf{h}[n]}{\sigma_n^2 + \underbrace{\mathbf{h}^T[n]\mathbf{M}[n \mid n-1]\mathbf{h}[n]}_{1 \times 1}}$	
<u>Update</u> :	$\widehat{\mathbf{s}}[n \mid n] = \widehat{\mathbf{s}}[n \mid n-1] + \mathbf{K}[n](x[n] - \underbrace{\mathbf{h}^{T}[n]\widehat{\mathbf{s}}[n \mid n-1]}_{\hat{x}[n n-1]})$	
	$\widetilde{x}[n]$: innovations	
<u>Est. MSE (p×p):</u> :	$\mathbf{M}[n \mid n] = \left(\mathbf{I} - \mathbf{K}[n]\mathbf{h}^{T}[n]\right)\mathbf{M}[n \mid n-1]$	

Kalman Filter Block Diagram

Looks a lot like Sequential LS/MMSE except it has the Embedded Dynamical Model!!!

