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13.4 Scalar Kalman Filter
Data Model
To derive the Kalman filter we need the data model:
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 EquationnObservatio][][][

 EquationState][]1[][

nwnsnx

nunasns

Assumptions
1. u[n] is zero mean Gaussian, White, 22 ]}[{ unuE σ=

2. w[n] is zero mean Gaussian, White, 22 ]}[{ nnwE σ=
3. The initial state is ),(~]1[ 2

ssNs σµ−
4. u[n], w[n], and s[–1] are all independent of each other

Can vary 
with time

To simplify the derivation: let µs = 0 (we’ll account for this later)
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Goal and Two Properties
{ }][,],1[],0[|][]|[ˆ nxxxnsEnns …=Goal: Recursively compute

[ ]Tnxxxn ][,],1[],0[][ …=X
Notation: 
X[n] is set of all observations
x[n] is a single vector-observation

Two Properties We Need
1. For the jointly Gaussian case, the MMSE estimator of zero mean 
based on two uncorrelated data vectors x1 & x2 is (see p. 350 of 
text)

}|{}|{},|{ˆ
2121 xxxx θθθθ EEE +==

2. If θ = θ1 + θ2 then the MSEE estimator is

}|{}|{}|{}|{ˆ
2121 xxxx θθθθθθ EEEE +=+==

(a result of the linearity of E{.} operator)
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Derivation of Scalar Kalman Filter
Innovation: ]1|[ˆ][][~ −−= nnxnxnxRecall from Section 12.6…

MMSE estimate of 
x[n] given X[n – 1]  

(prediction!!)

By MMSE Orthogonality Principle

{ } 0X =− ]1[][~ nnxE

data previous  the witheduncorrelat is that ][ ofpart  is ][~ nxnx

Now note: X[n] is equivalent to { }][~],1[ nxn −X
Why? Because we can get get X[n] from it as follows:
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What have we done so far?

• Have shown that { }][~],1[][ nxnn −↔ XX

⇒ Have split current data set into 2 parts:
1. Old data
2. Uncorrelated part of new data (“just the new facts”)

uncorrelated

{ } { }][~],1[|][][|][]|[ˆ nxnnsEnnsEnns −== XX Because of this⇒

So what??!!   Well… can now exploit Property #1!!

{ } { }""#""$%"" #"" $% ][~|][

]1|[ˆ

]1[|][]|[ˆ nxnsE

nns

nnsEnns +

−=

−=

∆

X

Update based on 
innovation part 

of new data

⇒

Now need to 
look more 
closely at 

each of these!prediction of s[n]
based on past data



5

]1|[ˆ −nnsLook at Prediction Term:

Use the Dynamical Model… it is the key to prediction because it tells us 
how the state should progress from instant to instant

{ } { }]1[|][]1[]1[|][]1|[ˆ −+−=−=− nnunasEnnsEnns XX

Now use Property #2:

{ } { }""" #""" $%""" #""" $%
0]}[{]1|1[ˆ

]1[|][]1[|]1[]1|[ˆ
==−−=

−+−−=−
nuEnns

nnuEnnsEanns XX

By Definition By independence of u[n] 
& X[n-1]… See bottom 
of p. 433 in textbook.

]1|1[ˆ]1|[ˆ −−=− nnsanns

The Dynamical Model provides the 
update from estimate to prediction!!
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]}[~|][{ nxnsELook at Update Term:

Use the form for the Gaussian MMSE estimate:

][~
]}[~{

]}[~][{]}[~|][{
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2 nx
nxE

nxnsEnxnsE
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=

]1|[ˆ][][~ −−= nnxnxnx

( )]1|[ˆ][][]}[~|][{ −−= nnxnxnknxnsE

"#"$%"#"$%
0

]1|[ˆ]1|[ˆ
=

−+−= nnwnnsby Prop. #2

Prediction Shows Up Again!!!

So…

Because w[n] is indep. 
of {x[0], … , x[n-1]}Put these Results Together:

[ ]]1|[ˆ][][]1|[ˆ]|[ˆ
]1|1[ˆ

−++−=
−−=

nnsnxnknnsnns
nnsa
"#"$% This is the 

Kalman Filter

How to get the gain?
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Look at the Gain Term:
Need two properties…

])}1|[ˆ][])(1|[ˆ][{(])}1|[ˆ][]([{ −−−−=−− nnsnxnnsnsEnnsnxnsEA.

The innovation
][~

]1|[ˆ][

nx

nnxnx

=

−−=
Aside
<x,y> = <x+z,y>

for any z ⊥ y

Linear combo of past data… 
thus ⊥ w/ innovation

0])}1|[ˆ][]([{ =−− nnsnsnwEB.

“ proof ”
• w[n] is the measurement noise and by assumption is indep. of the 
“dynamical driving noise” u[n] and s[-1]…  In other words: w[n] is indep. 
of everything dynamical…  So  E{w[n]s[n]} = 0

• is based on past data, which include {w[0], … , w[n-1]}, and 
since the measurement noise has indep. samples we get 

]1|[ˆ −nns
][]1|[ˆ nwnns ⊥−
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So… we start with the gain as defined above:

[ ]{ }
[ ]{ }

[ ][ ]{ }
[ ]{ }

[ ][ ]{ }
[ ]{ }

[ ]{ } [ ]{ }
[ ]{ } [ ]{ }][]1|[ˆ][2]1|[ˆ][

][]1|[ˆ][]1|[ˆ][

][]1|[ˆ][

][]1|[ˆ][]1|[ˆ][

][]1|[ˆ][

]1|[ˆ][]1|[ˆ][

]1|[ˆ][

]1|[ˆ][][
]}[~{

]}[~][{][

22

2

2

2

22

nwnnsnsEnnsnsE

nwnnsnsEnnsnsE

nwnnsnsE

nwnnsnsnnsnsE

nwnnsnsE

nnsnxnnsnsE

nnsnxE

nnsnxnsE
nxE

nxnsEnk

n −−++−−

−−+−−
=

+−−

+−−−−
=

+−−

−−−−
=

−−

−−
==

σ

Use Prop. A in num.
Use x[n] = s[n]+ w[n] 
in denominator 

(!)

(!!)

Use 
x[n] = s[n]+ w[n] 

in numerator 

Expand

= 0 by Prop. B]1|[ −=∆ nnM

Plug in for innovation

MSE when s[n] is estimated 
by 1-step prediction
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This gives a form for the gain:

]1|[
]1|[][ 2 −+

−
=

nnM
nnMnk

nσ

This balances… 
• the quality of the measured data 
• against the predicted state

In the Kalman filter the prediction acts like the 
prior information about the state at time n
before we observe the data at time n
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Look at the Prediction MSE Term:

But now we need to know how to find M[n|n – 1]!!!

[ ]{ }
[ ]{ }
( )[ ]{ }2

2

2

][]1|1[ˆ]1[

]1|1[ˆ][]1[

1|[ˆ][]1|[

nunnsnsaE

nnsanunasE

nnsnsEnnM

+−−−−=

−−−+−=

−−=−

22 ]1|1[]1|[ unnMannM σ+−−=−

Why are the cross-terms zero?  Two parts:
1. s[n – 1] depends on {u[0] … u[n – 1], s[-1]}, which are indep. of u[n]
2. depends on {s[0]+w[0] … s[n – 1]+w[n – 1]}, which are

indep. of u[n]
]1|1[ˆ −− nns

Use dynamical 
model & exploit 

form for 
prediction

Cross-terms = 0

Est. Error at previous time
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Look at a Recursion for MSE Term: M[n|n]

[ ]{ } ( )[ ]{ }22 ]1|[ˆ][][]1|[ˆ][]|[ˆ][]|[ −−−−−=−= nnsnxnknnsnsEnnsnsEnnBy def.: M

Term A Term B
Now we’ll get three terms: 

E{A2}, E{AB}, E{B2}
{ } ]1|[2 −= nnMAE

{ } [ ][ ]{ }

]1|[][2

]1|[ˆ][]1|[ˆ][][22

−−=

−−−−−=

nnMnk

nnsnxnnsnsEnkABE

{ } [ ]{ }
[ ]

[ ] ]1|[][][ of Num.][

][ of Den.][

]1|[ˆ][][

2

222

−==

=

−−=

nnMnknknk

nknk

nnsnxEnkBE

from (!!)… is num. k[n]

from (!)… is den. k[n]

by definition

]1|[
]1|[][ 2 −+

−
=

nnM
nnMnk

nσ
Recall:
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So this gives…

]1|[][]1|[][2]1|[]|[ −+−−−= nnMnknnMnknnMnnM

( ) ]1|[][1]|[ −−= nnMnknnM

Putting all of these results together gives 
some very simple equations to iterate… 

Called the Kalman Filter

We just derived the form for Scalar State & Scalar Observation.
On the next three charts we give the Kalman Filter equations for:

• Scalar State & Scalar Observation
• Vector State & Scalar Observation
• Vector State & Vector Observation



13

Kalman Filter: Scalar State  &  Scalar Observation
u[n] WGN; WSS; ),0(~ 2

uN σ][]1[][ nunasns +−=State Model:
Varies 
with n][][][ nwnsn +=xObservation Model: w[n] WGN; ~ ),0( 2

nN σ

22}])1|1[̂]}1[{(]1|1[

]}1[{]1|1[̂

s

s

ssEM

sEs

σ

µ

=−−−−=−−

=−=−− Must Know: µs, σ2
s , a, σ2

u, σ2
n

Must Know: µs, σ2
s , a, σ2

u, σ2
nInitialization:

Prediction: ]1|1[̂]1|[̂ −−=− nnsanns

22 ]1|1[]1|[ unnMannM σ+−−=−Pred. MSE:

]1|[
]1|[][ 2 −+

−
=

nnM
nnMnK

nσ
Kalman Gain:

( )]1|[̂][][]1|[̂]|[̂ −−+−= nnsnxnKnnsnnsUpdate:

( ) ]1|[][1]|[ −−= nnMnKnnMEst. MSE:
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Kalman Filter: Vector State  &  Scalar Observation
1 )(~;;1; ][]1[][ ××××+−= rNr pp ppnnn Q0,uBAsBuAssState Model:

1][];[][][][ ×+= pnnwnnnx TT hsh ),0(~ 2
nN σw[n] WGN; Observation Model:

{ } s
T

s

E

E

CssssM

µss

=−−−−−−−−=−−

=−=−−

])1|1[ˆ]}1[])(1|1[ˆ]}1[(]1|1[

]}1[{]1|1[ˆ Must Know: µs, Cs, A, B, h, Q, σ2
n

Must Know: µs, Cs, A, B, h, Q, σ2
nInitialization:

]1|1[ˆ]1|[ˆ −−=− nnnn sAsPrediction:

TTnnnn BQBAAMM +−−=− ]1|1[]1|[Pred. MSE (p×p):

""" #""" $%
11

2 ][]1|[][
][]1|[][

×

−+
−

=
nnnn

nnnn T
n hMh

hMK
σKalman Gain (p×1):

"""" #"""" $%
"" #"" $%

sinnovationnx

nnx

T nnnnxnnnnn

   :][~
]1|[ˆ

])1|[ˆ][][(][]1|[ˆ]|[ˆ
−

−−+−= shKssUpdate:

( ) ]1|[][][]|[ −−= nnnnnn T MhKIMEst. MSE (p×p): :
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Kalman Filter: Vector State  &  Vector Observation
1 )N(~;;1; ][]1[][ ××××+−= rr pp ppnnn Q0,uBAsBuAssState Model:

1 )][N(~][;][;1];[][][][ ×××+= MnnpMnMnnnn C0,wHxwsHxObservation:

{ } s
T

s

E

E

CssssM

µss

=−−−−−−−−=−−

=−=−−

])1|1[ˆ]}1[])(1|1[ˆ]}1[(]1|1[

]}1[{]1|1[ˆ Must Know: µs, Cs, A, B, H, Q, C[n]}Must Know: µs, Cs, A, B, H, Q, C[n]}Initialization:

]1|1[ˆ]1|[ˆ −−=− nnnn sAsPrediction:

TTnnnn BQBAAMM +−−=− ]1|1[]1|[Pred. MSE (p×p):

1

][]1|[][][][]1|[][
−

×










−+−= """ #""" $%

MM

TT nnnnnnnnn HMHCHMKKalman Gain (p×M):

"""" #"""" $%
"" #"" $%

sinnovationn

nn

nnnnnnnnn

   :][~
]1|[ˆ

])1|[ˆ][][(][]1|[ˆ]|[ˆ

x

x

sHxKss
−

−−+−=Update:

Est. MSE (p×p): : ( ) ]1|[][][]|[ −−= nnnnnn MHKIM
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Kalman Filter Block Diagram

K[n] Σ

Az-1

+

+

][ˆ nuB

]1|[ˆ −nns

x[n]
Σ

H[n]
]1|[ˆ −nnx

+

−

][~ nx ]|[ˆ nns

Estimated
State

Estimated
Driving NoiseInnovations

Observations

Embedded
Observation

Model

Embedded
Dynamical

ModelPredicted 
Observation

Predicted 
State

Looks a lot like Sequential LS/MMSE except it 
has the Embedded Dynamical Model!!!
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Overview of MMSE Estimation

Jointly 
Gaussian LMMSE

Bayesian 
Linear 
Model

LMMSE 
Linear 
Model

}|{ˆ xθθ E=

Optimal 
Seq. Filter

(No Dynamics)

Optimal 
Kalman Filter
(w/ Dynamics)

Linear 
Seq. Filter

(No Dynamics)

Linear 
Kalman Filter
(w/ Dynamics)

( )}{}{ˆ 1 xxCCθθ xxθx EE −+= −

( ) ( )θθθθ HµxCHHCHCµθ −++=
−1ˆ

w
TT

[ ]11
ˆ][ˆˆ
−− −+= n

T
nnnn nx θhkθθ

])1|1[ˆ][][]([]1|[ˆ]|[ˆ −−−+−= nnnnnnnnn sAHxKss

Force Linear
Any PDF, 
Known 2nd Moments

Assume  
Gaussian

Gen. MMSE
“Squared” Cost Function
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