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Chapter 6
Best Linear Unbiased Estimate

(BLUE)
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Motivation for BLUE
Except for Linear Model case, the optimal MVU estimator might:

1. not even exist
2. be difficult or impossible to find

⇒ Resort to a sub-optimal estimate
BLUE is one such sub-optimal estimate

Idea for BLUE:  
1. Restrict estimate to be linear in data x
2. Restrict estimate to be unbiased
3. Find the best one (i.e. with minimum variance)

Advantage of BLUE:Needs only 1st and 2nd moments of PDF

Mean &  Covariance
Disadvantages of BLUE:

1. Sub-optimal (in general)
2. Sometimes totally inappropriate  (see bottom of p. 134)
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6.3 Definition of BLUE (scalar case)
Observed Data: x = [x[0] x[1] . . . x[N – 1] ]T

PDF:  p(x;θ )  depends on unknown θ

BLUE constrained to be linear in data: xaT
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6.4 Finding The BLUE (Scalar Case)
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Q: When can we meet both of these constraints?

A: Only for certain observation models (e.g., linear observations)
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Finding BLUE for Scalar Linear Observations
Consider scalar-parameter linear observation:

x[n] = θs[n] + w[n] ⇒ E{x[n]} = θs[n]

Tells how to choose 
weights to use in the 

BLUE estimator form 
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Then for the unbiased condition we need:

Now… given that these constraints are met…
We need to minimize the variance!!

Given that C is the covariance matrix of x we have:

{ } { } Caaxa TT
BLU == varˆvar θ

Like var{aX} =a2 var{X}
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Goal: minimize aTCa subject to aTs = 1

⇒ Constrained optimization

Appendix 6A: Use Lagrangian Multipliers:  
Minimize    J = aTCa + λ(aTs – 1)
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Appendix 6A shows that this achieves a global minimum
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Applicability of BLUE

We just derived the BLUE under the following:
1. Linear observations but with no constraint on the noise PDF
2. No knowledge of the noise PDF other than its mean and cov!!

What does this tell us???
BLUE is applicable to linear observations

But� noise need not be Gaussian!!! 
(as was assumed in Ch. 4 Linear Model)

And all we need are the 1st and 2nd moments of the PDF!!!

But� we�ll see in the Example that we 
can often linearize a nonlinear model!!!
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6.5 Vector Parameter Case: Gauss-Markov Thm

Gauss-Markov Theorem:
If data can be modeled as having linear observations in noise:

wHθx +=
Known Matrix Known Mean & Cov

(PDF is otherwise 
arbitrary & unknown)

Then the BLUE is: ( ) xCHHCHθ 111ˆ −−−= TT
BLUE

and its covariance is: ( ) 11
ˆ

−−= HCHCθ
T

Note: If noise is Gaussian then BLUE is MVUE
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Ex. 4.3: TDOA-Based Emitter Location

Tx @ (xs,ys)

Rx3
(x3,y3)

Rx2
(x2,y2)

Rx1
(x1,y1)

s(t)

s(t – t1) s(t – t2) s(t – t3)

Hyperbola:
τ12 = t2 – t1 = constant

Hyperbola:
τ23 = t3 – t2 = constant

TDOA = Time-Difference-of-Arrival

Assume that the ith Rx can measure its TOA: ti

Then… from the set of TOAs… compute TDOAs

Then… from the set of TDOAs… estimate location (xs,ys) 

We won’t worry about 
“how” they do that.
Also… there are TDOA 
systems that never 
actually estimate TOAs!
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TOA Measurement Model
Assume measurements of TOAs at N receivers (only 3 shown above):

t0, t1, … ,tN-1There are measurement errors

TOA measurement model:
To = Time the signal emitted
Ri = Range from Tx to Rxi
c = Speed of Propagation   (for EM: c = 3x108 m/s)

ti = To + Ri/c + εi i = 0, 1, . . . , N-1

Measurement Noise ⇒ zero-mean, variance σ2, independent (but PDF unknown)
(variance determined from estimator used to estimate ti’s)

Now use: Ri = [ (xs – xi)2 + (ys - yi)2 ]1/2

iisisossi yyxx
c

Tyxft ε+−+−+== 22 )()(1),(
Nonlinear 

Model
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Linearization of TOA Model

⇒ θ = [δx δy]T

So… we linearize the model so we can apply BLUE:
Assume some rough estimate is available (xn, yn)

xs = xn + δxs ys = yn + δys

know estimate know estimate

Now use truncated Taylor series to linearize Ri (xn, yn):
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Three unknown parameters to estimate: To, δys, δys
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TOA Model vs. TDOA Model
Two options now:

1. Use TOA to estimate 3 parameters: To, δys, δys

2. Use TDOA to estimate 2 parameters: δys, δys

Generally the fewer parameters the better…
Everything else being the same.

But… here “everything else” is not the same: 
Options 1 & 2 have different noise models

(Option 1 has independent noise)
(Option 2 has correlated noise)

In practice… we’d explore both options and see which is best.



13

Conversion to TDOA Model N–1 TDOAs rather 
than N TOAs

TDOAs:  1,,2,1,~~
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Apply BLUE to TDOA Linearized Model
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Describes how large 
the location error is

Dependence on σ2

cancels out!!!

Things we can now do:
1. Explore estimation error cov for different Tx/Rx geometries

• Plot error ellipses
2. Analytically explore simple geometries to find trends

• See next chart (more details in book)
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Apply TDOA Result to Simple Geometry

Rx1 Rx2 Rx3

d d
α α
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Tx



















−

=

2

2
22

ˆ

)sin1(
2/30

0
cos2

1

α

α
σ cθCThen can show:

Diagonal Error Cov ⇒ Aligned Error Ellipse

And�  y-error always bigger than x-error ex

ey
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• Used Std. Dev. to show units of X & Y
• Normalized by cσ… get actual values by 

multiplying by your specific cσ value

• For Fixed Range R: Increasing Rx Spacing d Improves Accuracy

• For Fixed Spacing d: Decreasing Range R Improves Accuracy
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