V-0. Review of Probability
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Random Variable

® Definition
Numerical characterization of outcome of a
random event

® Examples
1) Number on a rolled die or dice

2) Temperature at specified time of day
3) Stock Market at close
4) Height of wheel going over a rocky road
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Random Variable

® Non-examples
1) ‘Heads’ or ‘Tails’ on coin }

2) Red or Black ball from urn

® Basic Idea — don’t know how to completely
determine what value will occur

— Can only specify probabilities of RV values
occurring.
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Two types of Random Variables

Random Variable

P

Discrete RV Continuous RV

* Die e Temperature
» Stocks * Wheel height
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Given CRV X, What is the probability that X = x, ?

== QOddity : P(X

=X,) =0

Otherwise the Prob. “Sums” to infinity

=% Need to think of Prob. Density Function (PDF)

/\/

R px(x) «—=_The Probability density function

of RV x

N/

Xo Y+A o ”
X

P(Xg < X < Xg +A) = area shown

= [ px (x)dx
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Most Commonly Used PDF:

Gaussian PDF

1 o~ (x-m)?/20°

IO(X)=6\/§

A RV with this pdf
IS called a Gaussian
RV

m & O are parameters describing one of the many

Gaussian pdf, where

m = mean of RV x

O =std. Deviation of RV x (Note: G > 0)

2

O“ = Variance of RV x
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Three views of Guassian PDF’s

Px(X)

/ = —= Area= 0.683 (i.e. 68.3% of area is

/ﬁ%( within 1 ¢ of mean)
- : X

\ X=m X

small o > > Small variability/uncertainty

N
=)
>
~

>
<
4

Large o ::> Large variability/uncertainty

N\

\ N

>
>
~
>
<

4

7127



Why Is Gaussian Used?

sCentral Limit theorem (CLT)

The sum of N independent RV’s has a pdf
that tends to be Gaussian as N — «©

»So What! Hereis what : Electronic systems generate
Internal noise due to random motion of atoms Iin
electronic components. The noise is the result of
summing the random effects of lots of atoms.

“ CLT applies H‘ Guassian Noise
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= Generally: take the noise to be Zero Mean

1 eX2/2c72

pX(X): G\/g
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Joint PDF of X and Y:  Pyy (X, Y)

Describes probabillities of joint events concerning X and Y. For

example, the probability that X lies in interval [a,b] and Y lies in
Interval [a,b] Is given by:

bd
Pri(a< X <b)and (c <Y <d)}:” Dyy (X, y)dxdy

(a)

This graph shows the Joint PDF

Graph from B. P. Lathi’'s book: Modern Digital & Analog Communication Systems 10/27



Conditional PDF

When you have two RVs it is often necessary to ask questions like: What
Is the PDF of Y if X Is constrained to take on a specific value.

In other words: What is the PDF of Y conditioned on the fact X is
constrained to take on a specific value.

As an example consider the husband/wife salaries above: What is the
PDF of the husband salary X conditioned on the wife salary is $100K?

So you first find all wives who make EXACTLY $100K and look at how
that set of husband salaries are distributed.

Clearly the result depends on the joint PDF since that captures all the
probabilistic details of how X and Y interact — and clearly it should only
depend on the slice of the joint PDF at the value of Y=$100K.

Now... we have to adjust this to account for the fact that the joint PDF
(even its slice) reflects how likely it is that X=$100K will occur (e.qg., if
X=100000 is unlikely then p,.,(100000,y) will be small); so... if we divide
by p,(100000) we adjust for this.
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Conditional PDF (cont.)

Thus, the conditional PDFs are defined as (“slice and normalize”):

(pyy (X, Y) [ pyy (X,Y)
, Px(x)=0 Py (y)=0
pyx (VIX) =1 px() pxy (XIY) =4 Py (Y)
0, \ otherwise 0, \\ otherwise
‘ X 1s held y 1s held
fixed fixed

“slice and normalize’j
___yis held fixed

This graph shows the Conditional PDF

Graph from B. P. Lathi’'s book: Modern Digital & Analog Communication Systems 12/27



Independent RV's

Independence should be thought of as saying that:
neither RV impacts the other statistically — thus, the
values that one will likely take should be irrelevant
to the value that the other has taken.

In other words: conditioning doesn’t change the
PDFI!

vy 0 =PI = py ()
Doy (K1) = BB = py (1
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Example: Independent Gaussian RVs

Independent
(zero mean)

Independent
(non-zero mean)

Dependent

y m / Different slices
-~ fpit--

§//
w X

Contours pxy(x,y).

If X & Y are independent,
then the contour ellipses
are aligned with either
the x or y axis

R W T
y

“%@ -
X

give
Lsame normalized
curves %

Different slices
give
different normalized

curves _
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An “Independent RV” Result
RV’'s X & Y are independent If:

Pxy (X,¥) = pPx (X)py (Y)

Here’s why:

Pxy (X, ¥) _ PPy (¥) _
px (X) v,

pY|X:x(y | X) =
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Characterizing RVs

PDFs tell everything about RVs
but sometimes they are “more than we need/know”
So... we make due with a few Characteristics
Mean of an RV (Describes the centroid of PDF)
Variance of an RV (Describes the spread of PDF)
Correlation of RVs (Describes “tilt” of joint PDF)
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Mean of RV
Mean = Average = Expected Value

\_
Y
Call it E{X}
Motivation First w/ Data Analysis View

Consider RV X = Score on atest Data: X;, X,,... Xy
Possible values of X : Vy V; V... Vi

O 1 2 ..100
N N0V0+
Test _ ZiZJ_Xi _\val + N2V2 + ...Nnvloo B %\/&
Average ~ T N N = 2.V

N. = # of scores of value V,
N = iNi (Total # of scores)
i=1

This is called Data Analysis or Empirical View{ Statistics }/27




Theoretical View of Mean
Data Analysis View leads to Probability Theory:

= For Discrete random Variables :

n
E{X}=x -
n=1 Probability |

= This Motivates form for Continuous RV:

E{X}= Ojox py%

Notation: E{X}= X
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Aside: Probability vs. Statistics

Probability Theory Statistics

» Given a PDF Model » Glven a set of data

» Predict how the » Determine how the
data will behave data did behave

1 &
E{X}= jx Py (X)dx < > Avg =ﬁZXi
—0 X “Law of Large —

\ PDF Numbers” Data

Dummy Variable |

There is no PDF herell!!
The Statistic measures how
the data did behave

There is no DATA herell!
The PDF models how data will behave
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" There are similar Data vs. Theory
M Views here... Let’s go to the theory

Variance measures extent of Deviation Around the
Mean

Variance: o = E{(X — mx)z}

= [ (x=my)? px (x)dlx

Note : If zero mean...
o’ = E{X?}

= szpx (x)dx
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Correlation Between RV'’s

Motivation First w/ Data Analysis View

Consider a random experiment with two outcomes

II~ 2 RVs X and Y of height and weight respectively

y I

) Ib. .;‘:-./ Positively Correlated
m e —
y -,-,-,-é"

o.o |
m X

X
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Three main Categories of Correlation

Positive correlation
“Best Friends”

Height
&
Weight

Zero Correlation
l.e. uncorrelated
“Complete Strangers”

Negative Correlation
“Worst Enemies”

Height Student Loans
& &
$ in Pocket Parents’ Salary
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Now the Theory...

To capture this, define Covariance :

oxy =E{(X =X)(Y =Y )}

oxy = [ [ (x=X)(y=Y) pxy (x,y)dxdy

If the RVs are both Zero-mean :‘va = E{XY}‘

f X =Y: 2

Oxy =0x =0y

2

If X & Y are independent, then:

UXY =O
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if oxy = E{(X=X)(Y =Y)}=0
Say that X and Y are “uncorrelated”

if oxy =E{(X=X)(Y-Y)}=0

Then E{XY}= XY

Called “Correlation of X &Y”

So... RVs Xand Y are said to be uncorrelated
If E{XY} = E{X}E{Y}
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Independence vs. Uncorrelated

X &Y are ||] X &Y are
Independent Uncorrelated
fyy (X,Y) %‘ E{XY}

= E{X}E{Y}

= Tx () fy (y)

PDFs Separate Means Separate
Uncorrelated

< Independence>

INDEPENDENCE IS A STRONGER CONDITION !t
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Confusing Terminology...
Covariance : |G yy = E{(X — )?)(Y _Y_)}

Correlation : E{XY} J Same if zero mean

O xy
O x Oy

Correlation Coefficient: | Oxy =

-1< L XY <1
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For Random Vectors...

x=[Xy Xq - Xp1'

Correlation Matrix :

Ry = E{xxT}:

Covariance Matrix :

Cy = E{(x-X)(x-%)"}
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