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EECE 301 
Signals & Systems

Prof. Mark Fowler

Note Set #6
• System Modeling and C-T System Models
• Reading Assignment: Sections 2.4 & 2.5 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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System Modeling
To do engineering design, we must be able to accurately predict the 
quantitative behavior of a circuit or other system. 

Circuits

Device Rules
R: v(t)=Ri(t)
L: v(t)=L(di(t)/di)
C: dv(t)/dt=1/Ci(t)

Circuit Rules
-KVL 
-KCL
-Voltage Divider
-etc.

Differential Equation

Mechanical

Device Rules
Mass: M(d2p(t)/dt2)
Spring: kxp(t)
Damping: kd(dp(t)/dt)

System Rules
-Sum of forces
-etc.

Differential Equation

Similar ideas hold for hydraulic, chemical, etc. systems…
“differential equations rule the world”

This requires math models:
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Simple Circuit Example:
Sending info over a wire cable between two computers

Computer
#2

Computer
#1

Two conductors separated by an insulator
⇒ capacitance

“Twisted Pair” of Insulated 
Wires

Typical values:  100 Ω/km

50 nF/km

coaxial cable
conductors separated by insulator

Recall: resistance increases with wire length

Two practical examples of the cable
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Simple Model:

Cable Model

0   0   1   1    0   1   0   1 …

Effective Operation:

x(t)t
5v

x(t)

y(t)

Receiver’s Thevenin
Equivalent Circuit 

(Computer #2)

Infinite Input 
Resistance (Ideal)

Driver’s Thevenin
Equivalent Circuit 

(Computer #1)
Zero Output 
Resistance (Ideal)
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0   0   1   1    0   1   0   1 …

x(t)t
5v

x(t)

Use Loop Equation & Device Rules:

This is the Differential Equation to be “Solved”:

Given: Input x(t)           Find: Solution y(t)

Recall: A “Solution” of the D.E. means…
The function that when put into the left 
side causes it to reduce to the right side

Differential Equation & System
… the solution is the output

dt
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Now… because this is a linear system (it only has R, L, C components!) we 
can analyze it by superposition.

0   0   1   1    0   1   0   1 …

t
5v

x(t)

t
5v

t

-5v

t
5v

t

-5v

+

+

+

Decompose the input…
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Input Components Output Components (Blue)
Standard Exponential Response 

Learned in “Circuits”:
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t
5v

t

-5v

t
5v
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+

+

+

Output Components

t
5v

Output

0   0   1   1    0   1   0   1 …

t
5v

x(t) Input

Output is a “smoothed” version 
of the input… it is harder to 
distinguish “ones” and “zeros”…
it will be even harder if there is 
noise added onto the signal!
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Computer
#2

Computer
#1

x(t) y(t)

Physical System:

Schematic System:

)(1)(1)( tx
RC

ty
RCdt

tdy
=+Mathematical System:

t
5v

Output
Mathematical Solution:

Progression of Ideas an Engineer Might Use for this Problem
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Automobile Suspension System Example
M2

Auto Frame

M1

Road

x(t) = Input: Tire’s Position

y(t) = Output: Frame’s Position

wheel

Suspension 
spring Shock 

absorber

ks kd

kt Tire’s spring 
effect

Results in 4th order differential equation:
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txFtya
dt

tdya
dt

tyda
dt

tyda
dt

tyd
=++++

Some function
of Input x(t)

The ai are functions of system’s physical parameters: 

M1, M2, ks, kd, kt
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Again… to find the output for a given input 
requires solving the differential equation

Engineers could use this differential equation model to 
theoretically explore: 

1. How the car will respond to some typical theoretical test 
inputs when different possible values of system physical 
parameters are used

2. Determine what the best set of system physical 
parameters are for a desired response

3. Then… maybe build a prototype and use it to fine tune 
the real-world effects that are not captured by this 
differential equation model
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So… What we are seeing is that for an engineer to analyze or 
design a circuit (or a general physical system) there is almost 
always an underlying Differential Equation whose solution for 
a given input tells how the system output behaves

So… engineers need both a qualitative and quantitative 
understanding of Differential Equations.

The major goal of this course is to provide tools that help gain
that qualitative and quantitative understanding!!!



14/15

Linear Constant-Coefficient Differential Equations
General Form: (Nth - order)

Input: x(t)

Output: y(t) Solution of the Differential Equation

∑∑
=

−

=

=+
M

i

i
i

N

i

i
i

N txbtyaty
0

)(
1

0

)()( )()()(
Indicates
ith order 

derivative

t
N

tt
ZI

NeCeCeCty λλλ +++=⇒ "21
21)(

ttt Neee λλλ ,,, 21 …N “modes”: Assuming distinct roots…

Then:   y(t) = yZI(t) + yZS(t)           (yZS(t) is our focus, so we will often say ICs = 0)

Recall: Two parts to the solution

(i)  one part due to ICs with zero-input (“zero-input response”)

(ii) one part due to input with zero ICs (“zero-state response”)

“Homogeneous 
Solution”

See Video Review

Characteristic Polynomial: λN + an-1 λN-1 + … + a1 λ + a0

N roots: λ1 , λ2 , λ3 , … , λN
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So how do we find yZS(t)?
If you examine the zero-state part for all the example solutions of differential 
equations we have seen you’ll see that they all look like this:

So we need to find out:
1. Given a differential equation, what is h(t-λ)

See Ch. 3, 5, 6, 8

See Ch. 2

See Ch. 3, 5, 6, 8

Really just need to know 
h(t)… it is called the system’s 

“Impulse Response”

λλλ dxthty
t

tZS )()()(
0
∫ −=

This is called “Convolution”
(We’ll study it in Ch. 2)

Input

Output when 
“in zero state”

2. How do we compute & understand the convolution integral

3. Are there other (easier? more insightful?) methods to find yZS(t)
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