

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #6

- System Modeling and C-T System Models
- Reading Assignment: Sections 2.4 & 2.5 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

System Modeling

To do engineering design, we must be able to accurately predict the quantitative behavior of a circuit or other system.

This requires math models:

Similar ideas hold for hydraulic, chemical, etc. systems...

"differential equations rule the world"

Simple Circuit Example:

Recall: resistance increases with wire length

Simple Model:

Effective Operation:

Use Loop Equation & Device Rules:

 $x(t) = v_R(t) + y(t)$ $\frac{dy(t)}{dt} + \frac{1}{RC}y(t) = \frac{1}{RC}x(t)$ $v_R(t) = Ri(t)$ $i(t) = C \frac{dy(t)}{dt}$ This is the Differential Equation to be "Solved": <u>Given</u>: Input x(t)<u>Find</u>: Solution *y*(*t*) Recall: A "Solution" of the D.E. means... **Differential Equation & System** The function that when put into the left ... the <u>solution</u> is the <u>output</u> side causes it to reduce to the right side

Now... because this is a <u>linear</u> system (it only has *R*, *L*, *C* components!) we can analyze it by <u>superposition</u>.

Input Components

Output Components (Blue)

Standard Exponential Response Learned in "Circuits":

Output Components

Output is a "smoothed" version of the input... it is harder to distinguish "ones" and "zeros"... it will be even harder if there is noise added onto the signal!

Progression of Ideas an Engineer Might Use for this Problem

10/15

Automobile Suspension System Example

Results in 4th order differential equation:

$$\frac{d^4 y(t)}{dt^4} + \frac{a_3 d^3 y(t)}{dt^3} + \frac{a_2 d^2 y(t)}{dt^2} + \frac{a_1 dy(t)}{dt} + a_0 y(t) = \underbrace{F[x(t)]}_{}$$

The a_i are functions of system's physical parameters:

$$M_1, M_2, k_s, k_d, k_t$$

Some function of Input x(t) 11/15

Again... to find the output for a given input requires solving the differential equation

Engineers could use this differential equation <u>model</u> to theoretically explore:

- 1. How the car will respond to some typical theoretical test inputs when different possible values of system physical parameters are used
- 2. Determine what the best set of system physical parameters are for a desired response
- 3. Then... maybe build a prototype and use it to fine tune the real-world effects that are not captured by this differential equation model

So... What we are seeing is that for an engineer to analyze or design a circuit (or a general physical system) there is almost always an underlying Differential Equation whose solution for a given input tells how the system output behaves

So... engineers need both a qualitative and quantitative understanding of Differential Equations.

The major goal of this course is to provide tools that help gain that qualitative and quantitative understanding!!!

Linear Constant-Coefficient Differential Equations

14/15

So how do we find $y_{ZS}(t)$?

If you examine the zero-state part for all the example solutions of differential equations we have seen you'll see that they all look like this:

3. Are there other (easier? more insightful?) methods to find $y_{ZS}(t)$

See Ch. 3, 5, 6, 8