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o D-T Systems: Z-Transform ... “Power Tool” for system analysis
e Reading Assignment: Sections 7.1 — 7.3 of Kamen and Heck
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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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Ch. 11 Z-Transform & D-T Systems

Z-Transform does for DT systems what the Laplace Transform does for CT systems

Z-T is used to
Solve difference equations Solve zero-state systems using
with initial conditions the transfer function

We will:
- Define the ZT
- See Its properties

- Use the ZT and its properties to analyze D-T systems

3/16



Section 7.1 Z-transform definitions

Given a D-T signal x[n] -o0 <n <o we’ve already seen how to use the DTFT:

0

DTFT : X(Q) = > x[nJe™*"
Periodic in Q with period 2z — "

Recall: For C-T case, the FT doesn’t converge for some signals... the LT mitigates
this problem by including decay in the transform
jot

e VS. e—(c7+ja))t — e—St

Controls decay of integrand }

So, for D-T signals we include decay into the transform; but in a slightly
different way:

Z—n

e—an VS. a—ne—an — (aejQ)—n

Controls decay of summand }
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So for the Laplace transform we looked at: s = o+ jw which is in rect. form

But, for Z-transform we use: z = a2’ which is in polar form

Q: Why the change?
A Suffice to say...it has to do with the periodic nature of the DTFT.

Remember that the DTFT is a periodic function of Q... and by using z = ae 12
we stick Q in as an angle which forces the periodic dependence on Q.

Just like for Laplace... there are two forms of the Z-Transform:

Two sided Z-transform

o0

X,(z)= Y x[n]z”" z is complex - valued
N=—o0
One sided Z-trao?sform AT [EaEE
X, (2)=>) x[n]z™" z is complex - valued Is Here
n=0
If X[n] is a causal signal: X,(z) = X,(2)
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So... the Z-Transform gives a complex-valued function on the “z-plane”

Im{z}

+Re{z}

Recall: for Laplace we had the s-plane... and we divided it into two parts:

» those values of s to the left of the jo-axis (left-half plane)

» those values of s to the right of the jw-axis (right-half plane)

“Unit Circle” =all z such

that|z| = 1,i.e.allz=e®

For the Z-Transform we’ll need to divide the
plane into two parts:

« those values of z outside the unit circle / Re{z}

4

Im{z}u f Unit circle
o o 1
 those values of z inside the unit circle /
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Reqgion of Convergence (ROC)

Set of all z values for which the sum in the ZT definition converges

Each signal has its own region of convergence.

(Same idea as for Laplace Transform)

Example of Finding the ZT: Unit Impulse Sequence

1, n=0
olnl= {O rr: #0
oln] & 1

5[n]

Z§[n]z‘”

—1x72°4+0xzt+0xz2%+--.

=1

ROC = all complex #’s

available on my website...

This result and many others are on Table of Z Transforms
please use it rather than the one in

your book, which has some errors

~
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Example of Finding the ZT: Unit Step u[n]

U(z) = iu[n]z

S¥a

K Using standard result

ROC = all z such
that |z| > 1

for “geometric sum”

ufn]

<

z 1

z7—1 1-77"

Example of Finding the ZT: Causal Exponential

Again using geometric sum;

X[n] =a"u[n]

X (2) = Za z"

i(z)n: z 1

-1
o Z—a l-az

ROC = all z such that || > |a|

a"u[n]

<

7—a 1-—azt
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Relationship between ZT & DTFET

Recall: for some signals the CTFT was embedded in the LT
(If the ROC includes the jo-axis)

We have a similar condition for the DTFT and the ZT...

If ROC includes the unit circle, then we can say that: [ X (QQ) = X (Z)‘z—ejg

X(€2) = “walk around the unit circle” and get X(z) values

Explains why X(€Q) is periodic... Q is an “angle around the unit circle”

= Once we’ve walked around the unit circle... going farther just
repeats the values X(z) that we are grabbing

= We only need to worry about Qe [-7 to 7)
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7.3 Inverse Z-T

Same story as for LT: using the integral inversion formula is hard!

— Use partial fractions

The use of partial fractions here is almost exactly the same as for Laplace
transforms...

... the only difference is that you first divide by z before performing the
partial fraction expansion... then after expanding you multiply by z to get the
final expansion.

Example of Partial Fraction for Inverse ZT:

Suppose you want to find the inverse ZT of

Z+1
2,3 1
2°+ 37+

Y(2)=
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First divide Y(z) by z to get:

Y(z) z+1
z  1°+37°+1z

Then use matlab’s residue to do a partial fraction expansion on Y(z)/z

Then we have:

Now... the point of dividing by z becomes clear... you get terms like this (with

[r,p,K]=residue([1 1],[1 0.75 0.125 0])

r= p= k=11
4 -0.5000
-12 -0.2500
8 0

Y(z) 4 12 8 47

= +— Y(2)=
7 7+4+ 741 z‘() 7+

2

Z’s in the numerator)... and they are on the ZT table!!!

=)

y[n]=4(=3)"uln] -12(-%)"u[n]+85[n]

I
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11.2 Properties of ZT
Linearity: Same ideas as for CTFT, DTFT, and LT

Right Shift for Causal Signal
Let x[n]=0, n<O0

If X[n]<> X(z), then x[n—qg]< 2 9X(2)

"Proof": X (z) =x[0]z° + X[z + x[2]z " +...

Z\X[n—ql}=0z°+0z" +...+ 02" + X[0]z ™ + x[L]z ™" +...
=0

= x[012°27 + x[U]z 'z + x[2]z°z % +...
‘) Pull out the z
=7 ¢ [x[O]z0 +x[A]z 7 + ]

— X(2)
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Example of Applying the Right-Shift Property for Causal Signals

Suppose we want to find the Z-T of the pulse signal:

1,n=012..,9-1
p[n] =
0, else

Well.. We can write this pulse in terms of the unit step:
pln]=u[n]-u[n-q]

Now, by linearity of the ZT we have: P(2) =Z{u[n]}-Z{u[n—-q]}

But we already know that ~ Zgu[n]} = ——
z—1

o« Z
Using the Right-Shift Property gives Z{u[n—q]}=2z" —

S0-.. P(Z):lii:|_z—(1|: Z :|:Z(1—Z_q)
z-1 z-1 z-1
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One-Sided ZT of the Right shift of Non-causal x[n]

Let x[n] be a non-causal signal... x[n] =0 forsomen <0 “g..ause this is the N

One-Sided ZT... not
all non-zero values of
X[n] are used here!!!

Then the One-Sided ZT is: x[n] < X (z)=> x[n]z™"

X[N] "

..rlrl‘“]lnt

/ n

Y

Note that right-shifting a non-causal signal brings new values into the one-
sided ZT summation!!!

xIn-2h Z{x[n-2]}= i X[n—2]z"

..N\:HLLI , >

What is Z{x[n-q]} in terms of X(z)??
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We’ll write this property for the first 2 values of g...
X[N-1 < z7'X(2)+ x[-1]

X[N-2] < z27°X(2)+x[-1]z" + x[-2]

... and then write the general result:

X(n—q] < 279X (2)+x[-1z """ + x[-2]2"* +... + 27'X[-q + 1] + X[-q]

“Proof” for g =

Z{n—qlt=x[-212° + X[z + x[0]z7% +x[Lz " +...

:éx:—2: 2° + x[-1] z‘1 + z‘z(x[O]z0 +x[A]z7 + )

g J W J

~—
Parts that get “shifted into” the X(z)
one-sided ZT’s “machinery”
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Convolution Property

For two causal signals x[n] & h[n] with one-sided ZTs X(z) & H(z)

... we have:

x[N]*h[n] < X(2)H(2)

Just like for CTFT, LT, & DTFT...

...Convolution Transforms to Multiplication!!!

There are several other properties... they are listed on the Table of
Z Transform Properties on my Webpage... please use that table
rather than the one in the book, which has some errors.

16/16



	EECE 301 �Signals & Systems� Prof. Mark Fowler

