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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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6.4 Using LT to solve Differential Equations

In Ch. 2 we saw that the solution to a linear differential equation has two parts:

ytotal (t) :\yzs (t)l_l_\yzi (t),

Ch. 2
Ch. 2 We’ve seen how to find this using: We’ve seen how to find this
' “convolution w/ impulse response” using the characteristic

or usin equation, its roots, and the so-
el @ ) \Called “characteristic modes” -
“multiplication w/ frequency respon&

Here we’ll see how to get y,,(t) using LT...
... get both parts with one tool!!!
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First-order case: Let’s see this for a 1st-order Diff. Eq. with a causal input
and a non-zero initial condition just before the causal input is applied.

The 15t-order Diff. Eq. describes: a simple RC or RL circulit.
The causal input means: we switch on some input at time t = 0.

The initial condition means: just before we switch on the input the
capacitor has a specified voltage on it (i.e., it holds some charge).

Input: Time-Varying : _
Voltage (e.g., quitar, E_Utplti Time-Varying

microphone, etc.) %C/h@—tzol R Voltage

. . AVAVAV * +

—C oy
Assume that for t<0 this has been Thus... the cap is fully
switched on for “a long time” charged to V¢ volts
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This circuit s then described by this Diff. Eq.:  |9Y(1) , 1\ 1 x(t)

dt
Cap voltage... just

before x(t) “turns on” > With ICy(0) =V, [ X =0, t<@

dy(t)

For this ex. we’ll solve the general 1%*-order Diff. EQ.: +ay(t) = bx(t)

Now the key steps in using the LT are:
» take the LT of both sides of the Differential Equation...
e use the LT properties where appropriate...
» solve the resulting Algebraic Equation for Y(s)
» find the inverse LT of the resulting Y(s)

Laplace Transform: —
_ _ _ IHard to solve
Differential Equation... — 1 — —
turns |_nto an.._. IEasy o aalve
Algebraic Equation ———71 — —
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We now apply these steps to the 1st-order Diff. Eq.:

£{dy(t) N ay(t)} _ L{bx(t)} prply LT to both sides

dt
1 |
L{ d);it) } + aL{y(t)} = bL{x(t)} ste Linearity of LT

l—' Use Property for LT of
[SY (s)— y(O_)] +aY (s) =bX (s) Derlvat]lc\é? ; .Hea::éountmg

--------------------------------------------------
oooo

Y(O_) b Solve algebraic equation
Y(S) = + X (S):
) .S+a. s+a ( ) IS,

=~ ~
Part of sol’n Part of sol’n
driven by IC driven by input
“Zero-Input Sol’n” “Zero-State Sol’n”

: Now... the “hard” part is to
Note that 1/(s+a) plays a role in both parts... find the inverse LT of Y(s)

Hey! s+a is the Characteristic Polynomial!! 6/21




Example: RC Circuit

Now we apply these general ideas to solving for the output of the previous
RC circuit with a unit step input....  X(t) = u(t)

dy®) 1 .. 1 __y(0) { 1/RC }
it T re YW= XV - Y= re T ssrre [

\ J

e 4

This “transfers” the Input X(s) to the output Y(s)

We’ll see this later as “The Transfer Function”

Now... we need the LT of the input...

1
S

From the LT table we have: X()=u(t) < X(s)=

Y(s) = y() [ _URC |1
" s+1/RC | (s+1/RC) |s

Now we have “just a function of s” to which we apply the ILT...
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So now applying the ILT we have:

_ |
e (e [y ||~

S +1/ RC | (s+1/RC)s

Yt = L { y(0°) } { 1/RC }} 1 Linearity of LT |

s+1/RC (s +1/RC)s
J /
This part (zero-lnput sol’n) is easy... This part (zero-state sol’n) is harder...
Just look it up on the LT Table!! It is NOT on the LT Table!!
g y(07) So... the part of
1 B N A—(t/RC) 0... the part o
L { 1/ RC} =y(0)e u(t) the sol’n due to
< S+ the IC (zero-
IRE input sol’n)
(O’)“ e u(t) decays down
y from the IC
t
\ - voltage
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Now let’s find the other part of the solution... the zero-state sol’n... the part that is
driven by the input:

.............................................................
. .

- ) | affurRe
s+1/RC| "~ || (s+1/RC)s [

...............................................................

We can factor this function of s as follows: o :
Partial Fraction

! { 1/RC } 1{[1 1 }} Expansion”, which
L =L —— IS just a “fool-proof”
(s+1/RC)s s s+1/RC way to factor ~ /

1 1

o~ 1 ol 1 Linearity
_E{s} £{3+1/RC} { of LT }

Now... each of these terms —— < ~ 7
Isonthe LT table: = u(t) — e—(t/RC)u(t)

N— —

_ [1_ a~(t/RC) }J(t)
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So the zero-state response of this system is: [1 — g (/RC) }J(t)

L—e "] ut)

~

o,

Now putting this zero-state response together with the zero-input response

we found gives:

y() = y(0)e " u(t) + f1—e " | ut)

Y ~ Y
IC Part Input Part
Notice that: A
The IC Part “Decays Away”
but...
\_ The Input Part “Persists” )
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Here is an example for RC = 0.5 sec and the initial V. = 5 volts:

6 [ [ I I
)
© AN 1 Zero-Input
S 2 i S T Response
= : : : :
0 | | |
4 6 8 10
6 T T T T
Y A A R S { Zero-State
= | | | |
S ol i | Response
> ' ' i '
0/-_ | | i |
0 2 4 6 8 10
6 | | | |
0 | | | |
T AN\ e . Total
3 | | | |
R R, N S SN T i Response
= : : : :
D ] ] i ]
0 2 4 6 8 10
t (sec)
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Second-order case

Circuits with two energy-storing devices (C & L, or 2 Cs or 2 Ls) are
described by a second-order Differential Equation...

dy(t dy(t dx(t
dilZ( ) va, i’ji ) v y(t) = b1$+box(t)
Assume Causal Input
w/1Cs y(07) & y(07) X(t) = 0‘ t<0
X(07)=0

We solve the 2"d-order case using the same steps:
Take LT of Diff. Equation:

[s2Y (s) = y(07)s — y(07) |+ a,[sY (s) - y(0) |+ a,Y (s) = bysX (5) + by X (5)

\.

J/

—

\. ~ J \_V_,

From 2d derivative property,
accounting for ICs

From 1st derivative property, From 1st derivative
accounting for ICs property, causal signal
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----------------------------------------------------------------------------------------------------------
.

Solve for Y(s): Y()_y(o )s+y(0)+a1y(01 { bys + by }X(s)

Part of sol’'n | ( Note this shows up | part of sol’n

driven by IC in both places... driven by input

ero-Input Sol'n” itis the “Zero-State Sol'n
Characteristic

\_ Equation J

Note: The role the Characteristic Equation plays here!

It just pops up in the LT method!
The same happened for a 1st-order Diff. Eq...

...and it happens for all orders

Like before...

to get the solution in the time domain find the Inverse LT of Y(s)

1
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To get a feel for this let’s look at the zero-input solution for a 2nd-order system:

(s) = y(0)s+y(0)+ay(0) _ y(0)s+|y(0)+a,y(0)
5" +23,5+3 s*+a,S + &,

Y

Zi

which has... either a 15t-order or 0"-order polynomial in the numerator and...
... a 2"9-order polynomial in the denominator

For such scenarios there are Two LT Pairs that are Helpful:

\
Ae ™ sin[(a)n W )t] u(t) o

These are not

where: A=— ¢ _ 32 + Zé’a)ns + a)ﬁ in your book’s

o \1-¢ table... but
they are on the

Ae—é“a’ntsin[(a),ﬂ/l—g2 )t+¢] u(t) > table on my

website!
2
where : A:ﬂ\/(oé(_lga;jz)) il St

o, (1- —> :
S° + Zé’a)ns 4 a)ﬁ OtherW|_se...
Factor into

L @A1-¢7
al {—a_ ‘o ] two terms
/ 14/21




Note the effect of the ICs:

This form gives
y,i(0) = 0 as set by the IC

Ae " sm J1— { t+¢]u(t)

Y. (s) = y(0)s+y(0)+ay(0) _ y(0)s+[y(0)+a,y(0),
i s’ +a,S+a, s’ +a,S+a,
% If y(0) =0
Ag ™ sm u )|+ -
© S° + 24,5 +

S+«

$° +2(w S+ @

therwise }
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Example of using this type of LT pair: Let y(07)=2 y(07)=4

Then Y_.(s)

23+(4+a12)_2{ s+(2+a1)}

s’ +a,S+a, s’ +a,S+a,

Now assume that for our system we have:

Then

Compareto LT:

S+6
Y (S)=2
i) [32+4s+100}

S+«
s +2(m S+ @’

And identify:

a=6 pf=2
w'=100 = m, =10
20w, =4 = (=4/2w,=4/20=0.2

Pulled a 2 out from

each term in Num.

to get form just like
in LT Pair. |

8,=100 & a,=4
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So now we use these parameters in the time-domain side of the LT pair:

a=6 [=2 Assuming output
Is a voltage!
@, =10 ~ N
Na-¢w,f¥ . ., |(6-02x10f
-0 \ A_'B\/a)§< Iz +1=2 1000-0.27) +1=2.16 volts
Ae é””“sm[( n1-¢° )t+¢] u(t) ¢=tan1£—w“ 1_42] tan 1[160“3 szj 1.18 rad
o — L, 2 %

where: A= ﬂ\/% 1

_ 1| W, 1_4/2
¢ =tan (—a—ga)n J

Y, (1) = 2.16e % sin[9.80t +1.18] u(t)

/

Notice that the zero-input solution for this 2"d-order system oscillates...
1st-order systems can’t oscillate...
2nd- and higher-order systems can oscillate but might not!!
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2.5 r 1 r 1 r 1
% W S N N S S S S
sl iy, (t) = 2.16e ' sin[9.80t +1.18] u(t) ||
T ____________ -
E 05H-Y i LJLJLJ ____________ i
o : :
2 oMb N T oz
:;‘ﬁ D5H8---%---- J_____________..____________J;_____________..____________J_____________..____________J; ____________ -
-1 M. __J---__________..____________J;_____________..____________J--___________..____________J; ____________ -
{15] RSN S S N S—— — _— i
5L \ ____________ i
2 5 ] | i | ] | i
0 0.5 1 1.5 2 2.5 3 3.5 4
20T
Zoom In 24 OQQQ’/{ """"""
29 S\‘ -"’ _____________ //

-‘ '
- .
-

Notice that it
Qatisfies the ICs!!

y(0)=2 y(0)=4

0 0.05 0.1
t (sec)
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N®-Order Case

Diff. eq [« N1
of the d " y(t) ra, d y(t) A dy(t) ray(t) =b, dx™ (t) +h, dx(t) +byx(t)
system at" - odtM dt dt CdtM dt

For M <N and d'x(t) =0 1=0,12,....M -1

dt' o
Taking LT and re-arranging gives:

y IC(S) B(S) LT of the solution (i.e. the LT of
(s) = X(s)
A(s) A( ) the system output)

A(s)=s" +a,_s" " +..+as+a,

where “output-side” polynomial

N

B(s) =Dy, s" +... + s+ “input-side” polynomial

IC(s) = polynomial in s that depends on the ICs

Recall: For 2" order case: 1C(s) =y(07)s+ [y(o—) + aly(O‘)]
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Consider the case where the LT of x(t) is rational: X (s) = Ny (5)

Dy (s)
Then... Y(S) — IC(S) + B(S) X(S) _ IC(S) 4 B(S) Nx(s)
A(s)  Als) A(s)  A(s) Dy (8)

This can be expanded like this: Y (s) = I:((S)) + iES; + ; ((S ))
S S x (S

for some resulting polynomials E(s) and F(s)

_ B8

and input with X (s) =
AGS) input (s)

So... for a system with ~ H(s)

and Initial conditions you get:

Zero-Input Zero-State

----------------------

Ny (8)
Dy (s)

.......

\ J \

o g
..............................................................

.......

Decays in time domain if

A(s) have negative real parts

A4 A4
Transient Steady-State

roots of system char. polU Response  Response
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If all IC’s are zero (zero state) C(s) =0
Then:

Y(s)= {ig;} X (s)

T IH()—

Connection
To sect. 6.5

Zero-State

------------------------------------------------

g o
-------------------------------------------------

) 4 ) 4
Transient Steady-State
Response  Response

_—— Called “Transfer Function” of

the system... see Sect. 6.5
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Summary Comments:

1. From the differential equation one can easily write the H(s) by inspection!
2. The denominator of H(s) is the characteristic equation of the differential equation.

3.The roots of the denominator of H(s) determine the form of the solution...

...recall partial fraction expansions

BIG PICTURE: The roots of the characteristic equation drive

the nature of the system response... we can now see that via
the LT.

We now see that there are three contributions to a system’s
response:
1. The part driven by the ICs
a. This will decay away if the Ch. Eq. roots have negative
real parts

2. A part driven by the input that will decay away if the Ch. Eq.
zero-state < roots have negative real parts ... “Transient Response”
resp. 3. A part driven by the input that will persist while the input
« persists... “Steady State Response”

zero-input
resp.
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