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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #28
• C-T Systems: Laplace Transform… Solving Differential Equations
• Reading Assignment: Section 6.4 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal 
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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6.4 Using LT to solve Differential Equations
In Ch. 2 we saw that the solution to a linear differential equation has two parts:

)()()( tytyty zizstotal +=

Here we’ll see how to get ytotal(t) using LT…
… get both parts with one tool!!!

We’ve seen how to find this using: 
“convolution w/ impulse response”

or using 

“multiplication w/ frequency response”

Ch. 2

Ch. 5

We’ve seen how to find this 
using the characteristic
equation, its roots, and the so-
called “characteristic modes”

Ch. 2



4/21

Assume that for t<0 this has been 
switched on for “a long time”

First-order case: Let’s see this for a 1st-order Diff. Eq. with a causal input
and a non-zero initial condition just before the causal input is applied.

switch @ t = 0

The 1st-order Diff. Eq. describes: a simple RC or RL circuit.  

The causal input means: we switch on some input at time t = 0.

The initial condition means: just before we switch on the input the 
capacitor has a specified voltage on it (i.e., it holds some charge).

Input: Time-Varying 
Voltage (e.g., guitar, 

microphone, etc.)
Output: Time-Varying 

Voltage

x(t)

R

C y(t)
+ +

–
– VIC

+

–

Thus… the cap is fully 
charged to VIC volts

Thus… the cap is fully 
charged to VIC volts
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x(t) = 0,  t < 0With IC y(0-) = VIC

Cap voltage… just 
before x(t) “turns on”

)(1)(1)( tx
RC

ty
RCdt

tdy
=+This circuit is then described by this Diff. Eq.:

)()()( tbxtay
dt

tdy
=+For this ex. we’ll solve the general 1st-order Diff. Eq.:

Now the key steps in using the LT are: 
• take the LT of both sides of the Differential Equation…
• use the LT properties where appropriate…
• solve the resulting Algebraic Equation for Y(s)
• find the inverse LT of the resulting Y(s)

Laplace Transform: 

Differential Equation…
turns into an…

Algebraic Equation

Hard to solve

Easy to solve
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{ })()()( tbxtay
dt

tdy LL =
⎭
⎬
⎫

⎩
⎨
⎧ +

We now apply these steps to the 1st-order Diff. Eq.:

Apply LT to both sides

{ } { })()()( txbtya
dt

tdy LLL =+
⎭
⎬
⎫

⎩
⎨
⎧ Use Linearity of LT

[ ] )()()0()( sbXsaYyssY =+− −

Use Property for LT of 
Derivative… accounting 

for the IC

)()0()( sX
as

b
as

ysY
+

+
+

=
−

Solve algebraic equation 
for Y(s)

Note that 1/(s+a) plays a role in both parts…

Hey!  s+a is the Characteristic Polynomial!!

Now… the “hard” part is to 
find the inverse LT of Y(s)

Part of sol’n
driven by IC

“Zero-Input Sol’n”

Part of sol’n
driven by input

“Zero-State Sol’n”
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Example: RC Circuit
Now we apply these general ideas to solving for the output of the previous 
RC circuit with a unit step input…. )()( tutx =

)(1)(1)( tx
RC

ty
RCdt

tdy
=+ )(

/1
/1

/1
)0()( sX

RCs
RC

RCs
ysY ⎥⎦

⎤
⎢⎣
⎡
+

+
+

=
−

This “transfers” the input X(s) to the output Y(s)

We’ll see this later as “The Transfer Function”

s
sXtutx 1)()()( =↔=

Now… we need the LT of the input…

From the LT table we have:

sRCs
RC

RCs
ysY 1

)/1(
/1

/1
)0()( ⎥

⎦

⎤
⎢
⎣

⎡
+

+
+

=
−

Now we have “just a function of s” to which we apply the ILT…



8/21

{ }
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

=
−

sRCs
RC

RCs
ysY --

)/1(
/1

/1
)0()( 11 LL

So now applying the ILT we have:
Apply LT to 
both sides

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

+
⎭
⎬
⎫

⎩
⎨
⎧

+
=

−

sRCs
RC

RCs
yty --

)/1(
/1

/1
)0()( 11 LL

Linearity of LT

This part (zero-input sol’n) is easy…

Just look it up on the LT Table!!

This part (zero-state sol’n)  is harder…

It is NOT on the LT Table!!

)(/ tue RCt−

t)0( −y

So… the part of 
the sol’n due to 
the IC (zero-
input sol’n) 
decays down 
from the IC 
voltage

)()0(
/1

)0( )/(1 tuey
RCs

y RCt- −−
−

=
⎭
⎬
⎫

⎩
⎨
⎧

+
L
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⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

+
⎭
⎬
⎫

⎩
⎨
⎧

+
=

−

sRCs
RC

RCs
yty --

)/1(
/1

/1
)0()( 11 LL

Now let’s find the other part of the solution… the zero-state sol’n… the part that is 
driven by the input:

⎭
⎬
⎫

⎩
⎨
⎧

+
−

⎭
⎬
⎫

⎩
⎨
⎧=

RCss
--

/1
11 11 LL Linearity 

of LT

We can factor this function of s as follows:

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

+
−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+ RCsssRCs

RC --

/1
11

)/1(
/1 11 LL

Can do this with  
“Partial Fraction 

Expansion”, which 
is just a “fool-proof”

way to factor

Now… each of these terms 
is on the LT table: )(tu= )()/( tue RCt−=

[ ] )(1 )/( tue RCt−−=
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Notice that: 
The IC Part “Decays Away”

but…
The Input Part “Persists”

So the zero-state response of this system is: [ ] )(1 )/( tue RCt−−

[ ] )(1 / tue RCt−−

t
1

[ ] )(1)()0()( )/()/( tuetueyty RCtRCt −−− −+=

Now putting this zero-state response together with the zero-input response 
we found gives:

IC Part Input Part
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Here is an example for RC = 0.5 sec and the initial VIC = 5 volts:

Zero-Input 

Response

Zero-State 

Response

Total 

Response
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Second-order case

)()()()()(
01012

2

txb
dt

tdxbtya
dt

tdya
dt

tyd
+=++

w/ ICs )0(&)0( −− yy 00)( <= ttx

0)0( =−x

Assume Causal Input

Circuits with two energy-storing devices (C & L, or 2 Cs or 2 Ls) are 
described by a second-order Differential Equation…

Take LT of Diff. Equation:

[ ] [ ] )()()()0()()0()0()( 0101
2 sXbssXbsYayssYaysysYs +=+−+−− −−−

We solve the 2nd-order case using the same steps:

From 2nd derivative property, 
accounting for ICs

From 1st derivative property, 
accounting for ICs

From 1st derivative 
property, causal signal
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Solve for Y(s): )()0()0()0()(
01

2
01

01
2

1 sX
asas

bsb
asas

yaysysY ⎥
⎦

⎤
⎢
⎣

⎡
++

+
+

++
++

=
−−−

Note: The role the Characteristic Equation plays here!  

It just pops up in the LT method!

The same happened for a 1st-order Diff. Eq…

…and it happens for all orders

Like before…

to get the solution in the time domain find the Inverse LT of Y(s)

Part of sol’n
driven by IC

“Zero-Input Sol’n”

Part of sol’n
driven by input

“Zero-State Sol’n”

Note this shows up 
in both places…

it is the 
Characteristic 

Equation 
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To get a feel for this let’s look at the zero-input solution for a 2nd-order system:

[ ]
01

2
1

01
2

1 )0()0()0()0()0()0()(
asas

yaysy
asas

yaysysYzi ++
++

=
++
++

=
−−−−−−

which has… either a 1st-order or 0th-order polynomial in the numerator and…
… a  2nd-order polynomial in the denominator

( )[ ]
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=

+
−

−
=

+−

−

−

n

n

n

n

n
t

A

tutAe n

ζωα
ζω

φ

ζω
ζωαβ

φζωζω

2
1

22

2

2

1tan

1
)1(

:where

)(1sin

22 2 nnss
s

ωζω
αβ
++

+

For such scenarios there are Two LT Pairs that are Helpful:

These are not 
in your book’s 
table… but 
they are on the 
table on my 
website! 

( )[ ]
2

2

1
:where

)(1sin

ζω
α

ζωζω

−
=

−−

n

n
t

A

tutAe n

22 2 nnss ωζω
α

++

For…
0< |ζ| < 1

Otherwise…
Factor into 
two terms
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[ ]
01

2
1

01
2

1 )0()0()0()0()0()0()(
asas

yaysy
asas

yaysysYzi ++
++

=
++
++

=
−−−−−−

Note the effect of the ICs:

( )[ ] )(1sin 2 tutAe n
tn ζωζω −−

22 2 nnss ωζω
α

++
If  y(0-) = 0

This form gives 
yzi(0) = 0 as set by the IC

Otherwise

22 2 nnss
s

ωζω
α
++

+( )[ ] )(1sin 2 tutAe n
tn φζωζω +−−
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Example of using this type of LT pair:  Let 4)0(2)0( == −− yy

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
++
++

=
++
++

=
01

2
1

01
2

1 22242)(
asas

as
asas

assYzi
Then

Pulled a 2 out from 
each term in Num. 
to get form just like 

in LT Pair.

Now assume that for our system we have: a0 = 100 &   a1 =4

Then
⎥⎦
⎤

⎢⎣
⎡

++
+

=
1004

62)( 2 ss
ssYzi

22 2 nnss
s

ωζω
αβ
++

+Compare to LT:

2.020/42/442

10100

26

2

===⇒=

=⇒=

==

nn

nn

ωζζω

ωω

βα
And identify:
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So now we use these parameters in the time-domain side of the LT pair:

2.0

10

26

=

=

==

ζ

ω

βα

n
( )

( )
( )

( )

rad18.1
102.06
2.0110tan1tan

volts16.21
2.01100

102.0621
1

2
1

2
1

2

2

2(2

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×−
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=

=+
−
×−

=+
−

−
=

−−

n

n

n

nA

ζωα
ζω

φ

ζω
ζωαβ

Assuming output 
is a voltage!

( )[ ]
( )

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=

+
−

−
=

+−

−

−

n

n

n

n

n
t

A

tutAe n

ζωα
ζω

φ

ζω
ζωαβ

φζωζω

2
1

2(2

2

2

1tan

1
1

:where

)(1sin

[ ] )(18.180.9sin16.2)( 2 tutety t
zi += −

Notice that the zero-input solution for this 2nd-order system oscillates…
1st-order systems can’t oscillate…
2nd- and higher-order systems can oscillate but might not!!
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[ ] )(18.180.9sin16.2)( 2 tutety t
zi += −

Here is what this zero-input solution looks like:

Notice that it 
satisfies the ICs!!

Slope of +4

4)0(2)0( == −− yy

Zoom In
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Nth-Order Case

)()()()()(...)()(
01011

1

1 txb
dt

tdxb
dt

tdxbtya
dt

tdya
dt

tyda
dt

tyd
M

M

MN

N

NN

N

++=++++ −

−

−

Diff. eq 
of the 
system

For M ≤ N and 1...,,2,1,00)(

0

−==
−=

Mi
dt

txd

t
i

i

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

+++=

++++= −
−

ICstheondependsthatsinpolynomialsIC

bsbsbsB

asasassA

M
M

N
N

N

)(

...)(

...)(

01

01
1

1where

Taking LT and re-arranging gives:

)(
)(
)(

)(
)()( sX

sA
sB

sA
sICsY += LT of the solution (i.e. the LT of 

the system output)

“output-side” polynomial

“input-side” polynomial

Recall: For 2nd order case: [ ])0()0()0()( 1
−−− ++= yaysysIC
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Consider the case where the LT of x(t) is rational: 
)(
)()(

sD
sNsX

X

X=

)(
)(

)(
)(

)(
)()(

)(
)(

)(
)()(

sD
sN

sA
sB

sA
sICsX

sA
sB

sA
sICsY

X

X+=+=Then…

This can be expanded like this:
)(

)(
)(
)(

)(
)()(

sD
sF

sA
sE

sA
sICsY

X

++=

for some resulting polynomials E(s) and F(s)

)(
)(

)(
)(

)(
)()(

sD
sF

sA
sE

sA
sICsY

X

++=

So… for a system with 
)(
)()(

sA
sBsH =

)(
)()(

sD
sNsX

X

X=and input with 

and initial conditions you get:
Zero-Input
Response

Zero-State
Response

Transient
Response

Steady-State
Response

Decays in time domain if 
roots of system char. poly. 

A(s) have negative real parts

Decays in time domain if 
roots of system char. poly. 

A(s) have negative real parts
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If all IC’s are zero (zero state) C(s) = 0

Then:
)(

)(
)()( sX

sA
sBsY ⎥
⎦

⎤
⎢
⎣

⎡
=

)(sH≡
Connection
To sect. 6.5

Called “Transfer Function” of 
the system… see Sect. 6.5

)(
)(

)(
)()(

sD
sF

sA
sEsY

X

+=

Zero-State
Response

Transient
Response

Steady-State
Response
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BIG PICTURE: The roots of the characteristic equation drive 
the nature of the system response… we can now see that via 
the LT.

We now see that there are three contributions to a system’s 
response:

1. The part driven by the ICs
a. This will decay away if the Ch. Eq. roots have negative 

real parts
2. A part driven by the input that will decay away if the Ch. Eq. 

roots have negative real parts … “Transient Response”
3. A part driven by the input that will persist while the input 

persists… “Steady State Response”

Summary Comments:  

1. From the differential equation one can easily write the H(s) by inspection!

2. The denominator of H(s) is the characteristic equation of the differential equation.

3.The roots of the denominator of H(s) determine the form of the solution…

…recall partial fraction expansions

zero-input 
resp.

zero-state 
resp.
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