
  

Abstract—Indoor localization is one of the key topics in the 
area of wireless networks with increasing applications in 
assistive healthcare, where tracking the position and actions of 
the patient or elderly are required for medical observation or 
accident prevention. Most of the common indoor localization 
methods are based on estimating one or more location-
dependent signal parameters like TOA, AOA or RSS. However, 
some difficulties and challenges caused by the complex 
scenarios within a closed space significantly limit the 
applicability of those existing approaches in an indoor assistive 
environment, such as the well-known multipath effect. In this 
paper, we develop a new one-stage localization method based 
on spatial sparsity of the x-y plane. In this method, we directly 
estimate the location of the emitter without going through the 
intermediate stage of TOA or signal strength estimation. We 
evaluate the performance of the proposed method using Monte 
Carlo simulation. The results show that the proposed method is 
(i) very accurate even with a small number of sensors and (ii) 
very effective in addressing the multi-path issues. 
 

Index Terms— Time of Arrival (TOA), Received Signal 
Strength (RSS), Sparsity, Compressive Sensing (CS). 
 

I. INTRODUCTION 

Indoor localization has been a long-standing and 
important issue in the areas of signal processing and sensor 
networks that has raised increasing attention recently 
[1][10]. As the number of elderly people grows rather 
quickly over the past few decades and continue to do so 
[15], it is imperative to seek alternative and innovative ways 
to provide affordable health care to the aging population 
[16]. A compelling solution is to enable pervasive healthcare 
for the elderly and people with disabilities in their own 
homes, while reducing the use and dependency of healthcare 
facilities. To this aim new technology and infrastructure 
must be developed for an in-home assistive living 
environment. One of the key demands in such an assistive 
environment is to promptly and accurately determine the 
state and activities of an inhabitant subject. The indoor 
localization provides an effective means in tracking the 
position, motions and reactions of a patient, elderly or any 
person with special needs for medical observation or 
accident prevention.   

In assistive healthcare applications, the individual may 
wear a small device that could emit a radio frequency (RF) 
signal for localization. This emitter(s) propagates a signal 
and several pre-mounted wireless sensors located in known 
positions receive that signal. The sensors estimate the 
location of the emitter after sharing some data and 
performing some processing.  

The classic approach to localization methods is to first 
estimate one or more location-dependent signal parameters 
such as time-of-arrival (TOA), angle-of-arrival (AOA) or 
received-signal-strength (RSS). Then in a second step, the 
collection of estimated parameters is used to determine an 
estimate of the emitter’s location. However, the systems 
based on AOA need multiple antennas or a scannable 
antenna that are usually costly [3]. The methods based on 
signal strength measurement (RSS) require a costly training 
procedure and complex matching algorithms and also the 
positioning accuracy for these methods is limited by the 
large variance in indoor environments [4][10]. The methods 
based on time-of-arrival (TOA) are usually very accurate. 
However, the accuracy of the classic TOA based methods 
usually suffers from massive multipath conditions in indoor 
localization, which is caused by the reflection and diffraction 
of the RF signal from objects (e.g., interior wall, doors or 
furniture) in the environment [1].  

In this paper, we exploit spatial sparsity of the emitter on 
the x-y plane and use convex optimization theory to estimate 
the location of the emitter directly without going through the 
intermediate stage of TOA estimation. It is obvious that in 
emitter location problems, the number of emitters is much 
smaller than the number of all grid points in a fine grid on 
the x-y plane. Thus, by assigning a positive number to each 
one of the grid points containing an emitter and assigning 
zeros to the rest of the grid points, we will have a very 
sparse grid plane matrix that can be reformed as a sparse 
vector. In this context, a sparse vector is a vector containing 
only a small number of non-zero elements [11]. Since each 
element of this grid vector corresponds to one grid point in 
the x-y plane, we can estimate the location of emitters by 
extracting the position of non-zero elements of the sparsest 
vector that satisfies the delay relationship between 
transmitted signals and received signals.  

In principle, sparsity of the grid vector can be enforced 
by minimizing its 0 -norm which is defined as the number 

of non-zero elements in the vector. However, since the 0 -

norm minimization is an NP-hard non-convex optimization 
problem, it is very common (e.g in compressive sensing 
problems) to approximate it with 1 -norm minimization, 

which is a convex optimization problem and also achieves 
the sparse solution very well [11]. Thus, after formulating 
the problem in terms of the sparse grid vector, we can 
estimate this vector by pushing sparsity using 1 -norm 

minimization on the grid vector, subject to the delay 
relationship between the signals transmitted from the grid 
point and the signals received by the sensors. 
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In [12], the authors suggested a two-stage source 
localization method based on time-difference-of-arrival 
(TDOA) in a multipath channel exploiting the sparsity of the 
multipath channel for estimation of the line-of-sight 
component. In this method, the sensors don’t need to know 
the information on the specific transmitted symbols but, they 
require knowledge of the pulse shape of the transmitted 
signal. In [13], the authors suggested a compressive-sensing 
based distributed target localization. In this method, each 
sensor approximates the transmitted signal by its own 
received signal mapped to each one of the grid points. This 
idea helps to reduce the amount of data transmission in the 
sense of distributed localization but it lowers the quality of 
the estimation since each sensor estimates the transmitted 
signal just using its own received signal. Also, each sensor 
computes its own location estimation of the emitter that is 
not necessarily equal to other sensors’ estimations. However, 
in our method the signal will be estimated in the sensor 
network using all received signals for unknown signal cases 
to achieve more accurate results. 

Contrary to classic methods, in this paper we estimate the 
location of the emitter directly without going through the 
intermediate stage of TOA estimation. We will see this 
method is very robust and very effectively deals with 
multipath, which is a very serious problem in indoor 
localization due to the many reflections from furniture and 
walls.  

In Figure 1(a), we can see a typical apartment. Figure 
1(b) shows the same apartment with four receiver sensors 
mounted at the corners. Figure 1(c) shows a simple case for 
multipath scenario. In this figure, the solid lines present the 
direct path and dashed lines shows the reflected paths. 
However, given the extremely complex nature of the 
reflections within such a closed environment and the 
tremendous difference in the reflection rates for different 
building materials, it is impossible to conclude a rather 
perfect multi-path reflection model for the indoor 
circumstance. However, it is well agreed that the strength of 
reflected signals deteriorate after each reflection. Moreover, 
the TOA based localization systems usually suffer from 
first-order reflections since they generate the side-lobes very 
close to the main peak in the correlation stage used in 
traditional TOA based methods. Thus, the models like in 
figure 1(c) seem reasonable for the purpose of research. 

In our method, we also don’t need to have any time 
synchronization between emitter and receivers since the 
method is implicitly based on time difference of arrival 
(TDOA) between receivers. 

The proposed localization method can be also 
implemented for three-dimensional model. In this approach, 
the height of the worn device (emitter) from the floor can be 
also estimated. Thus, the system can detect if the patient 
falls on the floor because of unconsciousness or any other 
reasons.  

We evaluate the performance of the proposed method by 
Monte Carlo computer simulations. The simulation results 
show the accurate localization and high performance of this 
method even in multipath conditions, with low SNRs and 

with small number of sensors; this provides a significant 
advantage over using TOA, RSS or other single-stage 
methods. 
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Figure 1. (a) A typical apartment layout. (b) Four sensors mounted in the 
corners. (c) A simple case for multipath scenario. The solid line is direct 

path and dashed lines are reflected paths. 

 



  

II. PROBLEM FORMULATION 

Suppose that an emitter transmits a signal and L sensors 
receive that signal. The complex baseband signal observed 
by the lth sensor is  

( ) ( ) ( )l l l lr t s t w t   
                (1) 

where ( )s t  is the transmitted signal, l  is the complex path 

attenuation, l  is the signal delay and ( )lw t is a white, zero 

mean, complex Gaussian noise. Assume that each sensor 
collects Ns signal samples at sampling frequency 1/s sF T . 

Then we have 
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where lr  is the vector containing Ns samples of the received 

signal by lth sensor, s  is Ns samples of the transmitted 
signal and Dl  is the time sample shift operator by 

( / )l l sn T  samples. We can write ln
l D D where D  is an 
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To simplify the notations, we assume that we are 

interested in estimating the location of the target in the two-
dimensional (x-y) plane. As mentioned above, it is easily 
possible to expand the localization problem to the three-
dimensional case. 

 Now, we assign a number ,x yz  to each one of the grid 

points (x,y). Assume that ,x yz is one for the grid points 

containing an emitter and zero for the rest of the grid points. 
Thus, the signal vector received by lth sensor will be 

 

, , , , ,l x y l x y l x y l
x y

z  r D s w
 ,   (3)  

where , ,l x yD is the time sample shift operator w.r.t sensor l 

assuming that the emitter is located in the grid point (x,y) 
and the summations are over all grid points in the desired 
(x,y) range. Now, if we reform all of the grid points in a 
column vector and re-arrange the indices, we will have
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In assistive healthcare systems, we can easily assume that 
the transmitted signal s is known by the receiver sensors. 
However, in other applications when the signal is not known 
for receivers, we can consider the transmitted signal s as a 
deterministic unknown signal. Then, for each grid point, we 
estimate the transmitted signal using the Minimum Variance 
Unbiased estimator (MVU) as 
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where ˆ
ns is the MVU estimate for the transmitted signal 

from grid point n. We define the matrix nΓ  as the delay 

operator w.r.t all L sensors, assuming that the received signal 
comes from the grid point n (there is an emitter at grid point 
n):  
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Then, we can define  , 1, 2, ,n n Nθ  as an 1sLN   

vector containing all signals received by all L sensors when 
the emitter is in grid point n as 
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If we arrange all vectors nθ  for n:1...N  as the columns of a 

matrix Θ  as  
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then we have 
   r Θ z w                             (8) 
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where r is the vector of all L received signals, z is the 
sparse vector of z-values assigned to each grid point and w  
is the noise. Now, we can solve our problem by forming a 
BPIC (Basis Pursuit with Inequality Constraints) problem 
[14] as following:  
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or regularized BPDN (Basis Pursuit Denoising) problem 
[14] as: 
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III. SIMULATION RESULTS 

We examined the performance of the proposed method 
using Monte Carlo computer simulation with 500 runs each 
time for various numbers of sensors (from 3 to 8 sensors). 
We simulated the massive multipath conditions in a typical 
apartment shown in Figure1(a). The sensors are mounted at 
x-y locations (0,0) , (0,10) , (10,0) , (10,10) , (0,4) , (4,10) , 
(10,6) , (6,0) respectively and the location of the target has 
been chosen randomly. In this simulation, we used a BPSK 
signal with carrier frequency of 1 GHz. The sampling 
frequency is 200 MHz and the number of samples is equal to 
256. We run this simulation one time for SNR = 0dB and 
another one time for SNR = 10dB. 

Figure 2 shows the RMS Error vs. number of sensors for 
estimating the location of the target in ( , )x y  plane. As we 

expected, the accuracy gets better by increasing the number 
of the sensors. However, the results show that the proposed 
method has very good performance even for small number 
of sensors (3 sensors). Thus, we have this possibility to use 
small number of sensors to reduce the complexity and 
expenses of the system.  

Furthermore, the system works very well in the presence 
of multipath reflections and in noisy environments with low 
SNRs and it means that even with low transmitted power (to 
keep the worn device small with long battery life), we can 
achieve a high localization accuracy. 

IV. CONCLUSION 

The indoor localization is a very beneficial tool in 
assistive healthcare environment when tracking the location, 
behavior and reactions of the patient is required for medical 
observation, symptoms identification or accident prevention.  
Existing methods are susceptible to performance degradation 
due to the likely occurrence of multipath reflections in an 
indoor setting. 

To combat the degradation due to multipath we 
developed a one-stage localization method based on spatial 
sparsity of the target(s) in the grid plane. In this method, we 
assign a non-zero number to each one of the grid points 
containing an emitter (target) and zero to the rest of the grid 
points. Thus, the vector formed from these numbers will be a 
sparse unknown vector that we aim to estimate. Since each 
element of this vector corresponds to one grid point in the 
grid plane, we can estimate the location of emitters by 
extracting the position of non-zero elements of the sparsest 
vector that satisfy the delay relationship between transmitted 
signals and received signals. We evaluated the performance 
of the proposed method using Monte-Carlo simulation (with 
500 runs each time). The simulation results show that the 
proposed method has very good performance even with 
small number of sensors and for low SNRs. The results also 
indicate that, in contrary to the classic TOA based methods, 
the proposed approach is a very effective and robust tool to 
deal with multipath scenarios. 
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Figure (1): RMS Error for X and Y (meter) versus Number of sensors. 
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