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Abstract

A unified theory is developed for the detection of
signals in nonwhite noise using time-frequency and
time-scale signal transforms. This class includes the
cross- Wigner distribution and certain other members
of Cohen’s class, the Gabor transform, and the wavelet
transform.

Necessary and sufficient conditions are estab-
lished such that a signal transform is applicable to the
nonwhite noise detection problem. Applying this re-
sult to the reproducing kernel Hilbert space (RKHS)
associated with a finite-dimensional approzimation of
the noise covariance leads to weighted correlator struc-
tures in the time-frequency and time-scale domains.
This eztends results previously available only for the
white noise case.

1 Introduction

There has been much interest during the past
decades in time-frequency representations such as the
Wigner distribution and the Gabor transform [1], [2].
More recently, interest has turned to the wavelet trans-
form [3], which is a time-scale representation. In par-
ticular, the application of time-frequency and time-
scale methods to the problem of detecting a signal
in the presence of additive noise has been considered
{;1] - [7], and advantages of these approaches have

een noted. For example, Boashash and O’Shea [5]
applied Wigner distribution techniques to the detec-
tion and classification of the firings of an underwater
diesel engine in the presence of white noise and showed
that the resulting detector performed better than did
the classical time-domain method. They showed that
the improvement is due to time-varying filtering that
is inherent to the Wigner-based method. Similarly,
Friedlander and Porat [6] demonstrated that the time-
frequency localization provided by the Gabor trans-
form yields the capability to detect, in the presence of
white noise, partially overlapping transients with un-
known decay rates, oscillation rates, and arrival times.
Additionally, Tuteur [7] has shown that the wavelet
transform is effective in the detection of electrocardio-
gram signals.

These demonstrations of the effectiveness of the
time-frequency methods in overcoming some of the
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problems suffered by other signal detection techniques
are encouraging. However, the existing time-frequency
methods for detection have been formulated only for
the white noise case, and therefore have limited ap-
plicability to practical detection problems. While it is
true that a whitening filter could be used prior to the
application of the time-frequency methods, a direct
formulation for the nonwhite noise case would pro-
vide a more versatile and more widely applicable ap-
proach. For example, if a whitening filter is used, then
the time-frequency correlator uses time-frequency rep-
resentations of whitened versions of the signal; these
representations of the whitened signals are less use-
ful for further processing—such as signaturing and
classification—than are the time-frequency represen-
tations of the actual signals. Another characteristic of
the previously reported techniques is that despite the
similar inner product structures of the various time-
frequency and time-scale representations, the meth-
ods proposed for each transform have been developed
using differing formulations. In response to these ob-
servations, we have developed a formulation that al-
lows a wide variety of time-frequency and time-scale
representations to be applied in a unified way to the
detection of signals in nonwhite noise. Furthermore,
this unification provides a framework within which the
various time-frequency and time-scale detection meth-
ods can be compared and contrasted. Therefore, our
formulation not only extends the applicability of time-
frequency and time-scale methods to the nonwhite
noise, but provides insight into the proper choice of
a representation for a particular signal/noise environ-
ment.

In Section 2 we develop a unified transform ap-
proach to detection based on the reproducing kernel
Hilbert space (RKHS) formulation of the detection
problem. In particular, we give necessary and suf-
ficient conditions for a transform to unitarilly map
one RKHS onto another RKHS. In Section 3 we ex-
ploit the inherent inner product structure of each of
the time-frequency and time-scale representations to
show that the results of Section 2 are applicable to
each of these signal transforms. The application of
the wavelet transform to detection in the presence of
a 1/f type noise is illustrated by example.
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2 Unified Transform Approach to
Detection
The detection problem we consider is as follows.

Given a signal r received over the observation interval
I, make a decision between
} tel,

Hy: r(t) = ~(t) +n(t)
Ho: r(t)=n(t)
where + is the deterministic signal to be detected,
and n is some zero-mean Gaussian noise. The detec-
tion problem is typically solved by comparing a suffi-
cient statistic, computed from the received signal r, to
some pre-determined threshold. Our results are based
on the reproducing kernel Hilbert space (RKHS) for-
mulation of the sufficient statistic. An RKHS H(K) is
a special Hilbert space, uniquely associated with the
kernel K, that has the property that K(-,z) € H(K)
for all values of z and < f, K(:,z) >pyk)= f(z) for
every f € H(K). Briefly, under the assumptions that
I is a bounded interval and that the noise covariance
K is continuous on I x I, the sufficient statistic (or
likelihood ratio) is given by

A=< ™Y >H(K)1

where H(K) is the RKHS that is uniquely determined
by the noise covariance K [8].

The important insight provided by the RKHS for-
mulation is that the sufficient statistic is determined
completely by the inner product structure of H(K).
Thus, insight into the development of equivalent for-
mulations in alternative domains (e.g., time-frequency
and time-scale domains) can be gained by investigat-
ing the application of various operators to the space
H(K). In particular, we are interested in the question:
What types of unitary mappings can be applied to
H(K) such that the resulting space is another RKHS?
The answer to this question is provided here by devel-
oping the following theorem, which is an extension of
a theorem given by Chalmers [9] that gives the rela-
tionship between the kernels of two RKHSs that are
related by a bounded linear operator. Chalmers’ re-
sult requires a priori knowledge that the two spaces
are indeed RKHSs; in contrast, our result gives neces-
sary and sufficient conditions for an operator to map
an RKHS into another RKHS, and gives the relation-
ship between the kernels.

Notation for the following theorem: [T K (s,t)],x

means “operate on K;(s,t) as a function of s and eval-
uate the resulting function at the point z.”

Theorem 1 Let Hy be an RKHS wnith reproducing
kernel Ky defined on some set I} x I, and let T :
H, — Hj be unitary. The space Hy is an RKHS of
functions defined on some set I if and only if the op-
erator T can be represented by

(TH(x) =< f,T(,x) >n,, M

Jor some bivariate function T defined on I x I

that has the property that T(-,z) € H,, Vz € I. Fur-

thermore, the reproducing kernel Ky for Hy 13 given
by
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Ka(y,7) = ['T[T'Kl(s,t)],lz]tw, ve,ye . (2)

de-

Outline of proof: Under the assumption that glzl
ows

fines a unitary operator, with T(-,z) € H,, it fo
that

(Tf)(I) =< Tfr TT(',.’L‘) >Hy -

This establishes that Hy is an RKHS with repro-
ducing kernel K, given by Ka(y,z) = [TT(t,z))ey.
Conversely, under the assumption that Hp is an
RKHS, the unitary mapping 7 can be represented by

(TF)(=)

< Tfr K2('1x) >H,

<f, T—IKQ(', ) >H,

< f,T(',Z) >Hn

where T(-,z) € Hy. Furthermore, under each of

these assumptions, T(¢,z) = < K1(-,t), T(-,z) >u, =
[T K1(s,t)],» Which establishes (2).
]

>

8|z

This theorem characterizes the transforms that
can be applied to the detection problem. Specifically,
if T is a unitary operator that satisfies Theorem 1 with
H, = H(K), where K is the noise covariance, then the
sufficient statistic can be expressed as

A=<Tr, Ty >y (3)

where

Ky,z)= [T[TK(s’t)]’|‘]t|y' Vz,y € L.

Unfortunately, the formulation in (3) can be dif-
ficult to apply. In order to use a specific mapping in
(3), we must establish that it is a unitary mapping
defined on H(K) that satisfies Theorem 1. This can
be difficult since the applicability of a specific map-
ping depends on the interplay between the mapping
and the space H(K); therefore, if a specific mapping
works for one particular noise, it may not work for
some other noise. )

By considering a finite-dimensional approxima-
tion to the space H(K), it is possible to apply any
L?-unitary operator to a detection problem for which
the noise covariance is continuous on the bounded set
I x I. Specifically, the covariance K can be approxi-
mated by

N
KN(S’ t) = Z ’\'n ¢n(s)mr

n=1

where the {\,} and the {¢,} are the eigenvalues and
the eigenfunctions, respectively, of the noise covari-
ance K. Then we can define

N

K3 (5,8) = 3 1/An ¢n(s) $a0),

n=1



which gives rise to an integral operator IC,'\,1 such that
we can form an approximate sufficient statistic by

An <T77Y >H(KnN)

< T)Kj_vl Y >L’(I)’

= (4)
with Ay 5 A as N — oc.

By applying Theorem 1 to the finite-dimensional
space H(Kp) it is easy to show that it is possible
to apply any L2-unitary operator to (4) to arrive at
forms for Ay in alternative domains. Namely, if T
maps L2(I) unitarily onto some Hilbert space H, then

()

where fi;,l is the inverse of the integral operator that
corresponds to

AN =< Tr, K Ty >u,

RN(y: l‘) = [T[TKN (3’ t)]a|z] (6)

tly

This formulation allows a wide variety of signal
transforms to be applied to the detection problem;
including the cross-Wigner distribution, the Gabor
transform, and the wavelet transform.

3 Application of Time-Frequency and
Time-Scale Methods

We are interested here in applying the cross-
Wigner distribution, the Gabor transform, and the
wavelet transform to the detection problem. It is well
known that each of these transforms is, under the right
conditions, a unitary operator on L?(R); therefore,
the results of the previous section easily lead to a uni-
fied formulation for an approximation to the sufficient
statistic in terms of these transforms. In this section
weldiscuss certain aspects of these formulations in de-
tail.

The cross-Wigner distribution (CWD) between
signals f and g'is defined as

Wio(t,w) = /

—00

(o <]

e T f(t+7/2) g(t — 7/2) dr.

If g is chosen to be concentrated in time and fre-
quency, then Wy ; gives a linear representation of the
time-frequency content of f. The CWD is a member
of Cohen’s class [1], which has a general member given

by

C}:g(t, w)=1/2m /m /oo /w eI (Et—Tw—gu) (¢, 1)
flu+7/2)g(u — 7/2) dudr dE,

where the choice of the kernel & determines a
specific member of the class. Alternatively, a general
member of Cohen’s class can be expressed in terms of
the Wigner distribution by

C?,g(t,w) =

1/21r/; /i Bt — Tyw — €) Wy o(7,6) dr dE,
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where the bivariate function ¢ is given by

B(t,w) = 1/2m /_ ” /_ * itet—r) (€, 7)drd. (7)

If g is chosen as a fixed analyzing function, then
the bivariate function C}-:g can be interpreted as the
result of a linear operator acting on f. As seen in the
previous section, if this operator is unitary on L%(R),
then the sufficient statistic can be formed in terms of
cross-Cohen representations. It is well known that the
CWD can be considered as a unitary operator since it
satisfies

{o o] o o]
1/277/ / Wflvgl (t,w) sz,ya (t,w) dt dw
~o00 J —oo
=< f1,f2 >12 <g1,92 > 12y

which is known as Moyal’s formula [1]. However,
not all members of Cohen’s class satisfy Moyal’s for-
mula. Previously, Janssen [10] provided a sufficient
condition for a member of Cohen’s class to satisfy
Moyal’s formula; namely, if |®(£,7)] = 1 for all £
and 7, then the corresponding C}’,g satisfies Moyal’s
formula. (Note: Janssen’s condition is necessary and
sufficient only for a subclass of Cohen’s class.)

The following theorem gives a necessary and suffi-
cient condition for a member of Cohen’s class to satisfy
a form of Moyal’s formula and, therefore, be applicable
to the detection problem.

Theorem 2 For a faed g with ||gll} = 1/2r, CF,
satisfies

/ / C}:,g(ti w) C}i';‘g(t’w) dtdw =< f11f2 >r2
—oo0 J —o0

if and only if the mapping ¢, defined on a closed
subspace of L2(R?) by

wm&w=U%[:[:ﬂPﬂWQFhOw%,

where ¢(t,w) is defined by (7), is unitary.

Proof: For a fixed g with ||g||3 = 1/2~, define the
closed subspace Wg = {Wy,,|f € L(R)}. The oper-
ator W, : f — W, ; unitarilly maps L?*(R) onto Wg.
Thus, the mapping of f to C?, is then accomplished
by applying the composition ¢o W, to the function f.
Since the operator W, is unitary (due to Moyal’s for-
mula), it is necessary and sufficient that the mapping
¢ be unitary.

0

The results of Section 2 now imply that any mem-
ber C}’ g of Cohen’s class that satisfies the above theo-

rem may be used to approximate the sufficient statistic
via (5) and (6), which reduce to



e [ [t

(>} {e o] -
/ / Kyt wit',w') CF (¥, ') dt’ du’ dt duw,
—oo J—oo

®)

and

N
Ky'(twit' W) =3 1/MCE, (t,w) CT__ (¥, ).
n=1

(9)

This formulation results in a weighted correla-
tion between a time-frequency representation of the
received signal and a time-frequency representation of
a reference signal; the weighting kernel is the inverse
kernel of the reproducing kernel in the transformed
RKHS, and can be interpreted as the inverse kernel
of the covariance of the time-frequency representation
of the noise process. This formulation is a direct ex-
tension of the unweighted time-frequency domain cor-
rglator proposed for the white noise case in [4] and

The Gabor transform is another linear time-
frequency representation that is closely related to the
cross-Wigner distribution. Let g be an arbitrary finite-
energy signal; then, the Gabor transform of a signal
S, with respect to g, is given by the bivariate function
Gy f defined by

Gontrw) = [ s ar

If g is chosen such that ||g||2 = 1/2n, then the
mapping G, : L*(R) — L%(R?), defined by G, : f
G,f, is a unitary operator. Therefore, it is possible
to use the same formulation for solving the detection
problem as was used for the cross-Wigner distribution;
that is, replace 7, and C?_ in (8) and (9) by G,r
andG,r, respectively. In fact, there really is very little
difference between these two time-frequency formula-
tions of the sufficient statistic since

vag(t’ w) = 2ejwt(G§f)(2ta 2“‘)))

where §(z) = g(—z). Thus, the CWD is more highly
concentrated in the time-frequency plane.

It is interesting to note that the Gabor transform
has a discrete form that arises by sampling (G, f) (7, w)
uniformly in 7 and w to give

(Gdf)(m,n) - [00 f(t)me—jnﬂt dt,

where the explicit dependence on g has been sup-
pressed to enhance the readability. By proper choice
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of the function g and the sampling grid parameters
(T, Q), the discrete form of the Gabor transform can
be made to be a unitary operator from L?(R) onto
12(22} [3]. The use of the discrete form results in a
formulation of the sufficient statistic that is similar to
that proposed in [6).

The wavelet transform of a signal f, with respect
to a signal g (called the mother wavelet), is given by

Wof)ro) = [ " el g ),

o0

where g is chosen such that
0o 2
cg é—/ —-—IG(w)l dw < 00.
0 w

Choosing g such that ¢, = 1 makes the wavelet
transform a unitary operator [11]. Note that the vari-
able s represents “scale” rather than “frequency.” The
concept of scale arises because as s goes toward pos-
itive infinity, (W, f)(7, s) zooms in on the small-scale
details of f that are near the time point 7. This zoom-
ing property gives the wavelet transform a time reso-
lution that adapts to the frequency range.

Because the wavelet transform is a unitary op-
erator, it can be used for the detection of signals in
nonwhite noise by applying the unified formulation de-
veloped in Section 2. Like the Gabor transform case,
this application results in a formulation identical to (8)
and (9), except with C:’ and C.‘:’, o Teplaced by Wyr
and W, respectively. T;liS application of the wavelet
transform is illustrated below, where we will use the
more practical discrete form of the wavelet transform
that arises by sampling (W, f)(7, s) nonuniformly in =
and s to give

(WeF)(m,n) = /_ = f(t) S"2g(S™t — mT)

which are known as the wavelet coefficients of f.
Note that the dependence of the coefficients on g has,
for clarity, not been displayed on the left-hand side
of this equation; also, when no confusion can arise,
(Wi f)(m,n) will be written as Wi,,. It is possible
to choose g and the sampling grid parameters (T, S)
such that the set {$™/2g(S™t — mT)} is an orthonor-
mal basis of L2(R) and the discrete wavelet transform
is a unitary operator from L2(R) onto ¢2(22), where
Z is the set of integers [3].

4 Example: Nearly 1/f Noise
The discrete form of the wavelet transform was
used by Wornell [lzl] in the analysis of a type of nonsta-
tionary process, called nearly 1/f noise, having mea-
sured spectra satisfying
k1

<
lwif =

with 0 < k; < k2 < o0, and B € (0,2) a fixed
parameter; this includes 1/f noise as a special case.

k2



Consider the (real-valued, for convenience) non-
stationary noise n defined [12] by the discrete wavelet
expansion

ﬂ(t) = Z Z Win gmn(t)’ (10)

where W,,,,, are the random wavelet coefficients of
the discrete wavelet transform, and {gmn} is a basis
of orthonormal wavelets related to the mother wavelet
g according to

Gmn(t) = 22 g(2"t — m). (11)
Let the Fourier transform G of g be continuous at
w =0 and let |G(w)| decay at least as fast as 1/w. If
the random sequence Wiy, is such that for arbitrary
distinct pairs n’ and n, W,,.,,» and W,,,, are uncorre-
lated sequences, and if for each fixed n the sequence
Wi is white with average power 277" o2, then the
noise n is a nearly 1/f noise [12].
If the noise n has zero-mean, then

E{Wmn Wm’n'} = 2‘5" 0'2 61:,71’ 6m,m’y

which shows that (10) is a Karhunen-Logve-like
expansion of the noise n. Thus, its covariance can be
expanded in terms of the ON wavelet basis as follows:

K(t, s)

= Z Z Z Z [2_ﬁ" 02 6"’"' m:""] gm't(t) Gm'n’ (8)

= Z Z 27An g2 Imn(t) gmn (5).
" m (12)

In practice, the wavelet transform of the received
data can be computed only at a finite number of scales
n and translations m. Since the effective support
width of g, doubles for each successively coarser
scale, the wavelet representation of a finite-duration
signal requires half the number of wavelet coefficients
at each successively coarser scale. Thus, if at scale N;,
wavelet coefficients are needed for —M; < m < M,
then at scale N; + P, the wavelet coefficients are
needed for —2P°M; < m < 2PM;. Let N; be the
coarsest scale to be considered and let N; + N be the
finest scale, where N is some positive integer; then
N; <n < Ny + N. Thus, a finite-term appr the ap-
proximate sufficient statistic

A(NI,N,Mx)
N1+N 2"~ MM,
= Z 2ﬂ"/¢72 Z
n=N, m=—2n—N1 M,
A NN
= Z (2°"/02) Ay,
n=N, (13)
where A,, is defined to be

(Wr)(m, n)(Wy)(m, n)

2n—N1 My

A= >

m==2n-NM M,

(Wr)(m,n) (Wy)(m,n).

This has an interesting interpretation. At each scale n,
the statistic A, is formed by correlating (Wr)(m, n)
and (Wdy)(m,n)—as functions of m—as if making
a decision in white noise. The sufficient statistic
A(n,,N, M) is then formed by fusing these “white-noise
statistics” together via a linear combination, with the
scale n statistic A, weighted by the reciprocal of the
average noise power at scale n.

5 Conclusion

We have extended a theorem on the mapping of
one RKHS to another, and have used that extension to
identify a class of transforms that can be used to for-
mulate the detection problem in alternative domains.
In particular, we have shown that a unified formula-
tion for the detection problem exists that allows the
use of common time-frequency and time-scale repre-
sentations such as the cross-Wigner distribution, the
Gabor transform, and the wavelet transform. In addi-
tion, we have described a subclass of Cohen’s class of
representations that can be used in this formulation.
Although the formulations given here have been for
the case of a deterministic signal, the random signal
case can be handled by replacing the representation
of v by an appropriate estimate; this results in an
estimator-correlator form for the sufficient statistic.

It should be noted that the wavelet transform
and the Gabor transform belong to a class of trans-
forms that arise from square-integrable group repre-
sentations [11]. Formulations of the sufficient statistic
in terms of the members of this class can be developed
by applying the results of Section 2 [13]. This provides
a possible means of choosing a particular alternative
domain based on similarities in the group structure of
a transform’s representation and properties of the ad-
ditive noise process. For example, the wavelet trans-
form and 1/f noise each exhibit a property known as
self-similarity. This type of interplay was illustrated
here by showing the effectiveness of the wavelet trans-
form for the detection of signals in the presence of 1/ f
type noises.
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