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ABSTRACT 

Data compression ideas can be extended to assess the data quality across multiple sensors to manage the network of 
sensors to optimize the location accuracy subject to communication constraints. From an unconstrained-resources 
viewpoint it is desirable to use the complete set of deployed sensors; however, that generally results in an excessive data 
volume. We have previously presented here results on selecting pre-paired sensors. We have now extended our results to 
enable optimal joint pairing/selection of sensors.   

Pairing and selecting sensors to participate in sensing is crucial to satisfying trade-offs between accuracy and time-line 
requirements. We propose two methods that use Fisher information to determine sensor pairing/selection. The first 
method optimally determines pairings as well as selections of pairs but with the constraint that no sensors are shared 
between pairs. The second method allows sensors to be shared between pairs. In the first method, it is simple to evaluate 
the Fisher information but is challenging to make the optimal selections of sensors. However, the opposite is true in the 
second method: it is more challenging to evaluate the Fisher information but is simple to make the optimal selections of 
sensors.     

Keywords: Sensor Selection, Sensor Management, Data Compression, Sensor Networks, TDOA/FDOA Emitter 
Location, Fisher Information 
 

1. INTRODUCTION 
Our general interest is in achieving network-wide optimization over a large number of simultaneously deployed airborne 
sensors to enable more efficient and effective cooperation within the network of sensors.  To provide a concrete 
perspective we consider the specific scenario of using the sensors to locate a non-cooperative RF emitter using 
TDOA/FDOA-based methods[1],[2]; here TDOA is “Time-Difference-Of-Arrival” and FDOA is “Frequency-Difference-
Of-Arrival”, which can be jointly estimated by cross-correlating signals from a pair of the sensors[3]. The accuracy of the 
TDOA/FDOA estimates depend on the signal SNR and the time-frequency structure of the intercepted signal[4]; 
however, the accuracy of the location estimate depends also on the emitter/sensor geometry through the so-called 
“geometric dilution of precision” or GDOP[1].  The goal of our work is to optimize over the set of all sensor assets, under 
the constraint of limited network communication resources. 

The sensors simultaneously intercept an RF emitter’s signal data and then cooperatively share the signal data between 
paired sensors to estimate the TDOA/FDOA for each sensor pair, which are then used to locate the RF emitter.  After 
data collection at the sensors, they send a small amount of data to a central node where it is possible to determine a 
rough estimate of the emitter location – accurate enough to assess the impact of the relative emitter-sensor geometry on 
the location processing task, thus allowing subsequent processing to be optimized with respect to the geometry and error 
sources.  (An alternative to this is when the network is cued with a rough location from some cueing sensor system.) 
Thus, the central node then uses knowledge of the current positions and trajectories of the remaining sensors to further 
reduce the participating subset based on the quality and the error sensitivity of their data sets. For example, one sensor 
may have high-quality data but its position and trajectory give it a poor GDOP, whereas another sensor could have low-
quality data but have good GDOP.  By eliminating sensors that have negligible usefulness to the final outcome of the 
task it is possible to significantly reduce the amount of network communication needed to accomplish the task with little 
degradation of the location accuracy. Further reduction in the needed communication resources is then achieved through 
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location-optimized compression when this final subset of participating sensors shares its data to support the location-
estimation tasks. 

We propose various approaches to this problem and discuss trade-offs between them.  The first method assumes that the 
sensors have pre-paired and share their data between these pairs; sensor selection then consists of selecting pairs to 
optimize performance while meeting constraints on number of pairs selected.  The second method consists of optimally 
determining pairings as well as selections of pairs but with the constraint that no sensors are shared between pairs.  The 
third method consists of allowing sensors to be shared between pairs. 

We discuss several aspects of these three methods.  The first method is simple to solve but clearly the pre-pairing 
requirement makes this method clumsy and very sub-optimal.  In the second method, it is simple to evaluate the Fisher 
information but is challenging to make the optimal selections of sensors.  However, in the third method things are 
reversed in that it is more challenging to evaluate the Fisher information but is simple to make the optimal selections of 
sensors. 

2. PROBLEM DESCRIPTION 
For simplicity we consider only the 2-D geometrical scenario. In the scenario we consider a rough estimate of emitter 
location has already been made (either by our system or by a cueing system).  As shown in Figure 1, we wish to find the 
location of a stationary emitter, denoted by [ , ]T

e ex y≡u , using signals intercepted at N unmanned aerial vehicle (UAV) 

sensors denoted S1 to SN, whose positions are [ , ]T
i i ix y≡x  and speeds are [ , ]T

i i ix y≡x� � � , for  .  1,2, ,i N= …

 
Figure 1 Geometry for stationary source location 

 

Let  denote the Euclidean distance between the emitter and the  sensor ; that is ir
thi iS
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To compute the TDOA/FDOA measurements the sensors must be paired. We consider three types of pairings within the 
network of sensors, as shown in Figure 2: 

• Type-I: No Sensor Sharing (two pairs that do not share a sensor are said to be “independent pairs”);  

• Type-II: De-Centralized Sensor Sharing (i.e., sensors are shared between pairs but no sensor is part of more 
than two pairs); 

• Type-III: Centralized Sensor Sharing (i.e., a common reference sensor is used). 

For the  pair of sensors the TDOA thi iτ  and FDOA iω  between the signals received at the two sensors in the pair are 
given by 
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where is the unit vector pointing from the sensor in the  pair to the emitter, for , and .i ku thk thi 1,2k = ef  is the 
transmitted frequency of the transmitter (assumed estimated in advance). 

 
Figure 2 Three types of sensor network 

 

 Assume there are M pairs totally. Let  be the parameter vector to be estimated by the  pair of 

sensors, which is paired by  and 
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Because the estimate  is obtained by maximum likelihood (ML) estimatorˆ
mθ

[3], the asymptotic properties of ML 
estimators[5] gives that the PDF of it is Gaussian with covariance matrix that is the inverse of the Fisher information 
matrix (FIM), so 
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As we know  depends only on the sensors received signals according tomFI [5]
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where  is the vector of received signals and is the covariance of the AWGN at the mms mΣ th sensor pair.  The FIM of 

has a block structure as 1 2[ , , , ]T T T T
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where  is the cross term FIM between  and  pairs, which is evaluated in the Appendix.  ,m kI thm thk

The TDOA/FDOA estimates are then used by the sensor system to estimate the location of the emitter.  Because of the 
asymptotic properties of the ML estimator of TDOA/FDOA we can take the TDOA/FDOA estimates as Gaussian so that 
the FIM of the estimate of the geo-location is given by[7]
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where is the Jacobian matrix of the  pair of sensors, defined by mG thm ( )m
m
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Our objective is to select an optimal subset of sensors and pair them as well. The criterion we used to make the decision 
is the trace of FIM of geo-location[6], ,[8] [9] as 

 
( ){ }max ( subset )geoall possible subset solutions

trace J
                                                       (9) 

 In the following sections, we discuss sensor selection algorithms for the three network types. 

3. ALGORITHMS 
3.1 Pre-paired sensors 

When sensors are pre-paired, we simply select pairs instead of sensors.  The FIM  and cross-FIM  are evaluated 
based on the paring and sensor sharing. 

mFI ,m kI



 
 

 
 

Type-I: No Sensor Sharing—When no sensor is shared the cross-FIMs  are zero.  The  are evaluated 

individually for each pair. Then 
,m kI mFI

θF  will have block diagonal structure as 
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The problem of selecting  sensor pairs from pairs is specified by K N

  .                                    (11) 
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The solution of this was discussed in[9]: we simply select the K pre-paired sensor pairs that have the largest values of  

 .                                                      (12) ,{ } { T
geo k k k ktrace trace=J G F }I G

Type-II: De-Centralized Sensor Sharing—Here we treat sensors by sensor sets, where a sensor set is defined as a group 
of sensors which have no connections to sensors outside the group and do not have any independent pairs inside the 
group.  For the sensor network in Figure 2 (b), the sets are defined as in Figure 3. 

 
Figure 3 Sensor sets example 

 

The geo-location FIM of each sensor set is computed; for example, the evaluation of set-1 is 
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Then the problem of selecting  sensors from K M sets is specified by 
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and can be easily solved. For example, if we are asked to select 5 sensors, we can check the set which has 5 sensors, or 
the two sets which have 2 sensors and 3 sensors respectively, and add the trace of the two sets up, compare it with the 
one with 5 sensors and choose the larger one. 

Type-III: Centralized Sensor Sharing—For the pre-paired case, the central sensor is already specified and the remaining 
 sensors pair with it to form  centralized pairs. There are 1N − 1N − 1

K
NC − possible ways to select pairs. The FIM of 

this set will have the following structure 
K

 .                                                    (15) 
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3.2 Non-pre-paired sensors 

We are given a set of sensors and asked to optimally choose a subset and the optimal pairings as well. In this case the 
pairing provides more flexibility to enable better performance but it introduces additional complexity as well.  

Type-I Pairing of Sensors: No Sensor Sharing—For  sensors, there could be  independent pairs. To choose 
 pairs is a time-consuming work if we enumerated all the possible solutions. For example, 

N / 2N
( / 2K N≤ ) 10N = , there 

are possible pairs, and ( 1 possible ways to make 5 pairs as a subset. Fortunately, 
since there is no sensor sharing and we select sensors pair by pair, the selection of the next pair will not affect the 
selection of the previous one. This yields a tree structure and allows use of integer dynamic programming method

2
10 45C = ) ( 3) 3 1 94N N− ⋅ − ⋅ =" 5

[7].  For 
this paper we used the “Branch and Bound” method to choose a pair at each step. The objective function is  
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A “feasible solution” means any selection/pairing of sensors where no sensors are shared and the selected number of 
sensors is as required.   

Type-II Pairing of Sensors: De-Centralized Sensor Sharing—For  sensors, there could be  possible pairs. To 

choose  pairs, there are be 

N 2
NC

2( NK C≤ 2
N

K
C

C  possible ways to pair and then select K pairs. For example, for 

, the number of ways is 122,1759, which is quite large and nonconductive to listing all of them. But 
fortunately, among all this large number of ways to pair and select, only a small number of them are unique. We have 
established the following theorem. 

10, 5N K= =

Theorem: For M  sensors, at most independent 1M −  pairs can be used as a “sensor set”; and different pairing 
methods of the M  sensors to make 1M −  independent pairs will result in the same CRLB of geo-location. 

We can exploit this result to simplify the optimal selection and pairing for this case. When we are given  sensors and 
asked to make  pairs, there are many solutions for this network. We can use at least  sensors to make it or at 
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most . Since the main advantage to share sensors is to save some sensor energies, we would like to use the number 
of sensors as less as possible. So here we only choose 

2K
1K +  sensors to make  pairs. K

For example, for given  and  pairs needed, compute the FIM of geo-location of all  solutions, and 
find the one with the largest trace. Inside each solution, sensors are “paired by sequence.”  For example, as in 

7N = 3K = 4
7 35C =

Figure 4, 
the solution set is . 4 1 2 5{ , , , }S S S S

 
Figure 4 An example of pairing by sequence  

4. SIMULATION RESULTS 
To demonstrate the capability of the sensor selection methods we present some simulation results for the case of locating 
an emitter with a random lay-down of 14 sensors.  The sensor selection proceeds as follows. Each sensor intercepts the 
emitter signal data at SNRs in the range of 10~15dB (where the SNR variation is assumed to depend quadratically on the 
range to the emitter). The full set of sensors share a very small amount of data to obtain a rough estimate of the emitter 
location; alternatively, we could consider the case where the system is cued by some other sensor system that provides a 
rough location that is to be improved using our sensors. 

Figure 5 shows the performance of sensor selections without sensor sharing. We select 6 to 14 sensors to make 3 to 7 
pairs, shown on the horizontal axis. The vertical axis shows the standard deviation of the geo-location error versus the 
number of sensors/pairs selected. The upper curve (-Δ-) shows the performance for the pre-paired sensor case without 
sharing; the lower curve (-O-) shows the performance when using the selection and pairing method discussed above for 
the case of no sensor sharing.  Not surprisingly, the ability to select the pairing on the basis of the sensor geometry and 
the rough emitter location enables better performance than using pre-paired sensors. 
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Figure 5 Performance of sensor selection w/o sharing 

 



 
 

 
 

Figure 6 shows the time consumption used in pairing sensors  for the non-sharing case versus the number of 
sensors/pairs selected. The upper line (-Δ-) shows the time required for the enumeration-based method, the lower one (-
O-) shows the time required for our selection and pairing method. These time results are for matlab-based 
implementations. 
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Figure 6 Time consumption of sensor pairing without sharing 

 

Figure 7 shows the performance of sensor selections allowing sensor sharing. We select 5 to 11 sensors from 12, to make 
4 to 10 pairs. It also shows the standard deviation of the geo-location error versus the number of sensors/pairs selected. 
The upper curve (-Δ-) shows the performance for the pre-paired sensor case with sharing; the lower curve (-O-) shows 
the performance using our selection and pairing method with sharing that is based on the Theorem in Section 3.2. 
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Figure 7 Performance of sensor selection allowed sharing 

 

5. DISCUSSION 
The results above show that it is possible to select and pair an optimal subset of sensors while significantly retaining 
performance levels. The sensor selection optimization problem was based on the fact that the geometry property and data 
quality of sensors play important roles in the emitter location estimation. We have used Fisher information to capture 
this inter-play between data quality and geometry.  We have discussed different situations: (i) pre-paired sensors vs. 
optimally pairing the sensors, and  (ii) allowing shared sensors or not. Following are some general conclusions made 
from this work. 



 
 

 
 

From the point of view of data compression, by reducing the number of sensors needed to achieve a desired accuracy we 
have reduced the total amount of data that needs to be communicated within the network.  Coupled with compression 
algorithms tailored for emitter location[6] this significantly increases the reduction of data to be communicated.  For 
example, if the intersensor communication employs a compression ratio of 5:1 (a reasonable amount given our previous 
results[10]) and we reduce the number of total sensors by a factor of two (reasonable given the results in Section 4) then 
the total network-wide compression ratio is 10:1, which is a significant reduction. 

Conclusions: Without Sensor Sharing 

♦ FIM of Geo-Location is easy to calculate, since each pair is independent; 

♦ However, the pairing method is more complicated, since we need to consider all the possible paring ways; 

♦ From a system point of view, the communication among different pairs can be done simultaneously; 

♦ The number of pairs needed is small; beyond a certain point the accuracy improves slowly as more pairs are selected 
to participate. 

 

Conclusions: With Sensor Sharing 

♦ For a total of N sensors we can have as many as 1N − pairs, the more the higher accuracy of location estimation; 

♦ Fortunately, FIM of all the possible independent sets are the same, so we do not need to consider about the pairing 
method. One simple way is to pair the sensors in nature order.  This is the main result of this work and leads to a 
major reduction in the optimization processing required. 

♦ However, since not all the pairs are uncoupled, there are cross terms in the TDOA/FDOA FIM. This complicates the 
computation required to support the optimization processing. 

♦ Some sensors work in more than one pair, the communication among them needs to be considered carefully to avoid 
collision.  This will be the focus of future work. 

 

APPENDIX: EVALUATION OF FIM CROSS-TERM 

Consider the case where two pairs share one sensor, as shown in Figure 8. 

 
Figure 8 Two pairs shared one sensor 

 

The three received signals at the sensors are 
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where [ ]nT  is the sampled transmitted signal, and [ ], 1,2,3i n iω =  is the AWGN received by sensor. s
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The cross term FIM between pai 1 and pair-2 can be evaluated as 
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Substitute  (21) and (22) int (20), we get 
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This is exactly the FI of TDOA of sensor  ’s received signal.  Following the same rule we get 3S
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Therefore the FIM cross-term between pairs is just the FIM of the shared sensor itself. The FIM of 
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where   is the FIM of TDOA/FDOA of  sensor.  iF thi
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