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ABSTRACT 

Data compression ideas can be extended to assess the data quality across multiple sensors to manage the network of 
sensors to optimize the location accuracy subject to communication constraints. From an unconstrained-resources 
viewpoint it is desirable to use the complete set of deployed sensors; however, that generally results in an excessive data 
volume. Selecting a subset of sensors to participate in a sensing task is crucial to satisfying trade-offs between accuracy 
and time-line requirements.  For emitter location it is well-known that the geometry between sensors and the target plays 
a key role in determining the location accuracy.  Furthermore, the deployed sensors have different data quality.  Given 
these two factors, it is no trivial matter to select the optimal subset of sensors.  We attack this problem through use of a 
data quality measure based on Fisher Information for set of sensors and optimize it via sensor selection and data 
compression.     

Keywords: Sensor Selection, Sensor Management, Data Compression, Sensor Networks, TDOA/FDOA Emitter 
Location, Fisher Information 
 

1. INTRODUCTION 
Our general interest is in achieving network-wide optimization over a large number of simultaneously deployed airborne 
sensors to enable more efficient and effective cooperation within the network of sensors.  To provide a concrete 
perspective we consider the specific scenario of using the sensors to locate a non-cooperative RF emitter using 
TDOA/FDOA-based methods 1,  2; here TDOA is “Time-Difference-Of-Arrival” and FDOA is “Frequency-Difference-
Of-Arrival”, which can be jointly estimated by cross-correlating signals from a pair of the sensors 3. The accuracy of the 
TDOA/FDOA estimates depend on the signal SNR and the time-frequency structure of the intercepted signal 4; however, 
the accuracy of the location estimate depends also on the emitter/sensor geometry through the so-called “geometric 
dilution of precision” or GDOP 1.  The goal of our work is to optimize over the set of all sensor assets, under the 
constraint of limited network communication resources. 

The sensors simultaneously intercept an RF emitter’s signal data and then cooperatively share the signal data between 
paired sensors to estimate the TDOA/FDOA for each sensor pair, which are then used to locate the RF emitter.  After 
data collection at the sensors, they send a small amount of data to a central node where it is possible to determine a 
rough estimate of the emitter location – accurate enough to assess the impact of the relative emitter-sensor geometry on 
the location processing task, thus allowing subsequent processing to be optimized with respect to the geometry and error 
sources.  (An alternative to this is when the network is cued with a rough location from some cueing sensor system.) 
Thus, the central node then uses knowledge of the current positions and trajectories of the remaining sensors to further 
reduce the participating subset based on the quality and the error sensitivity of their data sets. For example, one sensor 
may have high-quality data but its position and trajectory give it a poor GDOP, whereas another sensor could have low-
quality data but have good GDOP.  By eliminating sensors that have negligible usefulness to the final outcome of the 
task it is possible to significantly reduce the amount of network communication needed to accomplish the task with little 
degradation of the location accuracy. Further reduction in the needed communication resources is then achieved through 
location-optimized compression when this final subset of participating sensors shares its data to support the location-
estimation tasks. 
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2. MATHEMATICAL CHARACTERISTICS OF THE PROBLEM 
For simplicity we consider only a 2-D location scenario.  For this paper we assume that the sensors have been configured 
into a priori pairs of sensors; future work will consider the task of optimally forming the pairs.  This scenario is shown 
in Figure 1.  The (x,y) positions of the emitter is x = [xe,ye]T . The 2N sensors positions and velocities are notated as xi = 
[xi yi]T  and , respectively,  for i = 1, 2, …, 2N. The iT

yxi ii
vv ][=v th pair consists of sensor 2i – 1 and 2i. 

 

 
Figure 1: Illustration of the sensor scenario, where the sensors are grouped into a priori pairs. 

 

For the ith pair of sensors shown in Figure 2 the TDOA τi and FDOA ωi between the signals received at the two sensors 
in the pair are given by 
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where u  is the unit vector pointing from the kth
k  sensor to the emitter (as shown in Figure 2)and fe is the transmitted 

frequency of the transmitter (assumed estimated accurately enough for our purposes).  Because the TDOA/FDOA are 
obtained by maximum likelihood (ML) estimator (i.e., cross correlation 3), the asymptotic properties of ML estimators 
gives that the PDF of the TDOA/FDOA estimates is Gaussian with covariance matrix that is the inverse of the Fisher 
information matrix (FIM) 5.  Thus, the TDOA/FDOA measurements within the N pairs are given by  



 
 

 
 

 
Figure 2: Definition of geometric parameters between the emitter and one sensor pair in the network. 
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where the and are additive Gaussian noises (Gaussian due to ML estimation properties).  If J
i

nτ i
nω i is the FIM for the 

ith TDOA/FDOA pair, then – making the reasonable assumption of independent receiver noise between disjoint sensor 
pairs – the Fisher information matrix for the set of TDOA/FDOA estimates within the network is given by 

},,,diag{ 11 NJJJJ "= .                                                                (3)                          

where Ji is the 2×2 FIM for estimating the TDOA/FDOA at the ith sensor pair given by 
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where  is the known variance of the sensor noise and s2σ i is the vector of noise-free signal samples from the ith sensor 
pair.  We have explored the effect of compression on the diagonal elements of this FIM 6. 

To characterize the impact of compression and/or sensor selection we really need to look at the FIM for the geo-location 
estimate.  The FIM of the 2-D x-y geo-location estimate is easily computed using the form for the general Gaussian 
problem 5 given by 
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where – again –  the Gaussian structure arises due to use of the ML estimator for TDOA/FDOA); the Gi matrices are 
given by 
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evaluated at the true emitter location; in the algorithm developed here we will be forced to evaluate this at a rough 
location estimate made from a small amount of initially shared data (or from a rough location from a cueing sensor 
system). 

Now the problem of sensor pair selection can be specified.  The problem of selecting K < N sensor pairs (without 
compression) is specified by 
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where pi = 1 when the sensor is selected and pi = 0 when the sensor is not selected, and the function H is some 
appropriate matrix-to-scalar mapping (e.g., trace, determinant, etc.) 8  9, .  We have previously discussed the advantages of 
using the trace 8  9,  so we will use that here; using the trace we can re-write (6) as  
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which can then be optimized.  Note that there are three distinct types of terms within the square brackets in (7): the term 
that includes J  contains the impact of the TDOA FI, the term that includes Ji,11 i,22 contains the impact of the FDOA FI, 
and the term that includes Ji,12 contains the impact of the TDOA/FDOA “cross-FI”. 

Before addressing the optimization issues we discuss some insight into the sensor selection problem that comes from (7).  
Direct calculation shows that the geometry factor that multiplies the TDOA FIM term is 

2 2
,11 ,12 2

2 (1 cos )i i c iθ+ = −G G ,                                                                (8) 

where iθ is the angle subtended at the emitter by the two sensors of the pair. Thus, a larger angle leads to a larger 
contribution from the TDOA FI of that pair.  Thus to increase the usefulness of TDOA measurements, we should choose 
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pairs which have large subtended angles.  A similar analysis shows that for maximum FDOA impact, we should choose 
pairs with small angles and with the sensors moving perpendicularly to the line-of-sight to the emitter.  From this we can 
see there are complicated trade-offs among the geometry properties. 

After selection of the sensors it is then possible to formulate a simple data compression optimization over the selected 
sensors for the case where the transmission within each pair is allocated the same number of bits R; we have addressed 
this data compression elsewhere 8.  The challenge is that different allocations of the R bits to a given sensor pair will give 
different trade-offs between TDOA accuracy and FDOA accuracy 8.  An example of this is shown in Figure 3 where R 
bits is allocated to optimize a weighted combination of the TDOA FI and the FDOA FI; each asterisk marks an achieved 
TDOA/FDOA accuracy for R bits allocated to optimize for a different weighting. 

 

 
Figure 3:  Trade-off between TDOA and FDOA accuracies for different optimal allocations of bits for compression ratio 3:1 

and SNR1 = 15 dB & SNR2 = 15 dB; symbol � denotes the operational point (α=0.5) closest to that without 
compression. 

 
 8The specific trade-off that should be used on each pair depends on the geometry of the selected sensors  and can be 

chosen as follows.  Let Ω ⊂ {1, 2, … , N} be the indices of the selected sensors found to satisfy (6).  Then we seek to 
solve allocate R bits to each of the K selected sensor pairs 
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3. NUMERICAL ISSUES 
The FIM measures how much information is available from the data relevant to the parameter estimation.  In theory, 
evaluation of the FIM requires knowledge of the signal and analytical results for the derivatives that characterize the 
data’s sensitivity to the parameters.  However, for the TDOA/FDOA case it can be shown that the TDOA FI can be 
approximately evaluated from a measured sensor signal’s DFT coefficients X[k] using 
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Similarly the FDOA FI can be approximately computed from a measured sensor signal’s samples x[n] using  
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Also, the off-diagonal terms have structure described by 
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This motivates using a time-frequency decomposition such as a filter bank to gain joint access to the time and frequency 
characteristics of the signal.  However, in this case it becomes more challenging to numerically compute the FIM 
elements because such time-frequency representations lack the mathematical characteristics with respect to derivatives 
that are needed for a solid mathematical derivation.   This leads to the following conjecture, whose viability when using 
the Short-Time FT (STFT) for evaluation has been explored 7. 

 

Brazen Conjecture: Let S1[n,k] be the short-time Fourier transform or a one-sided filter bank representation.  It is 
important that the frequency range of the T-F representation is [–π,π] rad/sample, meaning that it explicitly shows 
separate channels for positive and negative frequencies.  Then the FIM can be approximately computed (up to a 
multiplicative factor) using: 
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 and twhere fk n are the frequency and time centers of the cells of the time-frequency representation. 

 

For the sensor selection problem we can compute the FIM elements using these equations.  For the data compression 
problem we can allocate bits to each time-frequency sample coming out of a filter bank based on the amount of Fisher 
information it has, as evaluated using an auxiliary STFT assessment via (12) – (14) 8  9, . 

4. ALGORITHM AND SIMULATION RESULTS 
4.1 Sensor selection 

To demonstrate the capability of the sensor selection method we present some simulation results for the case of locating 
an emitter starting with 10 pairs and selecting optimal subsets of various sizes.  A typical random lay-down of 10 sensor 
pairs is shown in Figure 4. The 10 pairs of sensors are randomly selected in a ring around the emitter’s position.     
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Figure 4:  A typical random lay-down of 10 pairs of sensors in a 2D x-y scenario covering a 20 km by 20 km area.  The axis 

units are in meters. 

 
The sensor selection proceeds as follows.  Each sensor intercepts the emitter signal data at SNRs in the range of 10 – 15 
dB (where the SNR variation depends quadratically on the range to the emitter).  The full set of sensors share a very 
small amount of data to obtain a rough estimate of the emitter’s location; alternatively, we could consider the case where 
the system is cued by some other sensor system.  On the basis of that rough estimate all the Gi are evaluated using (5).  
Then the FIM of each sensor pair is computed using (12) – (14).  Then the N square-bracketed terms in (7) are computed 
and rank ordered, after which it is easy to find the K-element subset that satisfies (7) for any K.  The selection results are 
shown in Figure 5, which shows the impact of the number of pairs selected on the normalized standard deviation of the 
geo-location standard deviation (i.e., root-sum-square of the x-y errors) where the normalization is with respect to the 
value achieved when all 10 sensor pairs are used.   
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Figure 5: Performance of the sensor selection scheme of maximizing (7) – called “Geometry Adaptive” selection – showing 

the normalized standard deviation of the geo-location error versus the number of pairs selected.  Two sub-optimal 
methods of sensor selection are shown for comparison: selecting pairs with largest SNR and randomly selecting pairs. 



 
 

 
 

 

In addition to the optimal selection results based on (7), Figure 5 shows two other ad hoc methods: (i) selection by 
choosing the K sensor pairs with the largest SNRs and (ii) randomly selecting K pairs.  These results were done for a 
single randomly-chosen sensor pair lay-down with 100 Monte Carlo runs over the ensemble of the noise process 
corrupting the sensor signals.  Note that with the optimal selection method we can reduce from 10 pairs to 6 pairs with 
negligible impact on the geo-location accuracy.  It should be noted that the kinds of sensor lay-downs considered (see 
Figure 4) are pre-disposed to enabling reasonable selection using SNR-based selection – thus, even in this SNR-
favorable setting we can outperform the SNR-based method, especially when selecting just a few sensor pairs. 

4.2 Sensor selection followed by data compression 

The results in the previous sub-section did not use data compression; in a real scenario we would use compression in 
addition to the sensor selection method.  Once the sensors are selected we can then perform “geometry-adaptive” data 
compression as follows.  Each sensor intercepts the emitter signal data at SNRs in the range of 10 – 15 dB (where the 
SNR variation depends quadratically on the range to the emitter).  The full set of sensors share a very small amount of 
data to obtain a rough estimate of the emitter’s location; alternatively, we could consider the case where the system is 
cued by some other sensor system.  On the basis of that rough estimate all the Gi are evaluated using (5).  Then the FIM 
of each sensor pair is computed using (12) – (14).  Then the N square-bracketed terms in (7) are computed and rank 
ordered, after which it is easy to find the K-element subset that satisfies (7) for any K.  Then using the rough using the 
available rough location estimate the TDOA/FDOA trade-off (recall Figure 3) for each selected pair is determined by 
solving (7) using numerical Lagrange multiplier methods10.  The results are shown in Figure 6 for a single set of selected  
sensors, where the vertical axis uses a common measure of emitter location accuracy called CEP (circular error 
probable) 1; small CEP is better. Note that the total system compression ratio would be the compression ratio at each 
sensor (the horizontal axis in Figure 6) times the ratio of total pairs to the number of pairs selected. 

 



 
 

 
 

 
Figure 6:  Simulation results using Geometry-Adaptive data compression that allocates bits to sensor pairs to maximize the 

geo-location Fisher information.  For comparison MSE-based compression results using the same transform coding 
structure but optimized to minimize MSE rather than to maximize the Fisher information. 

5. DISCUSSION 
The results above show that it is possible to extend our previous ideas for optimizing data compression (e.g., allocating 
bits to maximize the Fisher information) to optimally select a subset of sensor pairs.  This sensor selection optimization 
problem was made simple by the facts that the pairs were already specified and they were disjoint pairs (no sensor is in 
multiple pairs).  In that case we simply need to rank-order the square-bracketed terms in (6) and then choose the K 
largest of them.  Even for a large number of sensors this does not present much difficulty.  Reducing the number of 
sensors that need to participate in the location processing is a form of data compression because it reduces the  

However, we are currently exploring ways to attack the problem when the sensors are not paired a priori, which is a 
much more difficult problem.  If there are S sensors there are  (“S-choose-2”) different pairs that can be formed from 
these S sensors; for the case of S = 20 sensors (like we considered above) then there are 190 ways to pair the sensors – of 
course one would not want to ever use all 190 of those pairs at the same time.  We then need to select K of those pairs 
for our processing and there are ways to select K pairs from the  total possible pairs; for the case of S = 20 

sensors this leads to 8,145,060 different selections.  To solve this problem will require more than the brute-force 
optimization that we have used in this paper.  We have some preliminary results showing that it is possible to drastically 
reduce the number of possible selections. 
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Furthermore, in this paper we have done the sensor selection and the bit allocation separately and we have assumed that 
each sensor pair is allocated the same number of bits.  Our current work is exploring ways to remove these limitations.  
In general we seek to identify only viable pairs from the  total possible pairs and then non-uniformly allocate a total 
bit budget across the viable sensor pairs.  Of course we would prefer this to result in the smallest number of sensors 
receiving allocated bit, so there should be a penalty that grows as the total number of used sensors grows. 
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