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ABSTRACT 
 

This paper ties together and extends several recent results we have presented.  We previously showed: (i) the 
usefulness of non-MSE distortion criteria in data compression for time-difference-of-arrival (TDOA) emitter 
location (SPIE 2001 & 2002), and (ii) the ability to exploit redundancy between radar pulses in a joint 
TDOA/FDOA (frequency-difference-of-arrival) location scheme (SPIE 2001 & 2002).  In (ii) we showed how to 
compress radar signals by gating around the detected pulses and then putting the pulses into the rows of a matrix 
which is then compressed through use of the SVD; this approach employed a purely MSE distortion criterion.  An 
open question in this approach was: Is it possible to eliminate some of the pulses from the pulse matrix to increase 
the compression ratio without significantly sacrificing location accuracy?   

We resolve this question by applying our proposed non-MSE to the FDOA accuracy and finding the optimal set 
of pulses to remove from the pulse matrix.  The removal of pulses is shown to have negligible impact on the FDOA 
accuracy but does degrade the TDOA accuracy from that achievable using the SVD-based compression without 
pulse elimination.  However, we demonstrate that the SVD method includes an inherent de-noising effect (common 
in SVD-based signal processing) that provides an improvement in TDOA accuracy over the case of no compression 
processing; thus, the overall impact on TDOA/FDOA accuracy is negligible while providing compression ratios on 
the order of 100:1 for typical radar signals. 
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1. INTRODUCTION 
A common way to locate electromagnetic emitters is to measure the time-difference-of-arrival (TDOA) and the 

frequency-difference-of-arrival (FDOA) between pairs of signals received at geographically separated platforms.1,2,3  
The measurement of TDOA/FDOA between these signals is done by coherently cross-correlating the signal pairs.2,3  
This requires that the signal samples of the two signals are available at a common platform, which is accomplished 
by transferring the signal samples over a data link from one platform to the other.   

An important aspect of this processing that was not widely addressed in the literature until recently is that the 
available data link rate often is insufficient to accomplish the transfer within the time requirement unless some form 
of lossy data compression is employed.  To mitigate this, we have proposed data compression methods4–7, which can 
be grouped into two main categories of approach:  

� exploiting redundancy between pulses when the emitter to be located is a radar and  
� the more general approach of exploiting the relative importance of specific time-frequency components of 

general signals (i.e. communication or radar signals) through the use of a non-Mean-Square-Error (non-
MSE) distortion measure.   

This paper ties together and extends several recent results we have presented in these two areas.  We previously 
showed: (i) the usefulness of non-MSE distortion criteria in data compression for time-difference-of-arrival (TDOA) 
emitter location4,5 and (ii) the ability to exploit redundancy between radar pulses in a joint TDOA/FDOA 
(frequency-difference-of-arrival) location scheme6,7. In (ii) we showed how to compress radar signals by gating 
around the detected pulses and then putting the pulses into the rows of a matrix which is then compressed through 
use of the SVD; this approach employed a purely MSE distortion criterion.  An open question in this approach was: 



Is it possible to eliminate some of the pulses from the pulse matrix to increase the compression ratio without 
significantly sacrificing location accuracy?  We resolve this question by applying our proposed non-MSE to the 
FDOA accuracy and finding the optimal set of pulses to remove from the pulse matrix.  The removal of pulses is 
shown to have negligible impact on the FDOA accuracy but does degrade the TDOA accuracy from that achievable 
using the SVD-based compression without pulse elimination.  However, we demonstrate that the SVD method 
includes an inherent de-noising effect (common in SVD-based signal processing) that provides an improvement in 
TDOA accuracy over the case of no compression processing; thus, the overall impact on TDOA/FDOA accuracy is 
negligible while providing compression ratios on the order of 100:1 for typical radar signals. 

The two signals to be correlated are the complex envelopes of the received RF signals. The two noisy received 
signals to be processed are modeled as 
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where s(k) and d(k) are the complex baseband signals of interest and n(k) and v(k) are complex white Gaussian 
noises.  The signal d(k) is a delayed and doppler shifted version of s(k).  The signal-to-noise ratios (SNR) for these 
two signals are denoted SNR and DNR, respectively‡.  To cross correlate these two signals, one of them (assumed to 
be )(ˆ ks  here) is compressed, transferred to the other platform, and then decompressed before cross-correlation, as 

shown in Figure 1.  Signal )(ˆ ksc  has SNR of cSNR  after lossy compression/decompression. 

In Section 2 we review our use of SVD for compression of radar pulse trains.  In Section 3 we first review our 
earlier developments on distortion criteria that are not based on a pure mean-square error (MSE) measure and then 
develop results for pulse elimination based on our non-MSE distortion measures.  In Section 4 we present simulation 
results and in Section 5 we provide concluding remarks. 
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Figure 1: System Configuration for Compression 

 
2. SVD-BASED DATA COMPRESSION FOR RADAR PULSE TRAINS 

This section gives an overview of the previously proposed SVD-based method6,7.  Before compression 
processing, Platform #1 receives and digitizes the radar waveform. It is assumed that the radar waveform contains a 
sequence of nearly-evenly spaced pulses and that the SNR is large enough at the compression platform to allow 
detection/gating of the pulses. Once the signal has been digitized, it undergoes data compression as described in 
Figure 2.  It is clear that the pulses in the waveform, and their relative positions, contain the information required, 
and the “dead spaces” between the pulses contain no useful information. So, naturally, the first step in the data 
compression is to remove the unwanted samples between pulses by using pulse gating; all compression ratios stated 
here take the gated signal as the original, non-compressed signal (i.e., the reduction due to gating out the “dead 
spaces” is not included as part of the compression ratio).  

                                                           
‡ SNR (non-italic) represents an acronym for signal-to-noise ratio; SNR (italic) represents the SNR for )(ˆ ks . 



Pulse gating7 and pulse matrix formation are illustrated in Figure 3.  By design, a typical radar-interception 
receiver detects the beginning and end of each pulse and measures the times at which these events occur.  These 
time measurements will be called the measured leading edge (LE) and measured trailing edge (TE); for each 
detected pulse the number of samples that lie between TE and LE (inclusive) is the measured pulse width.  In order 
to minimize the amount of side information that must be sent, the pulse gating method optimally chooses the 
parameters G, W and T.7  After the Pulse Matrix is formed, the pulses in the rows are aligned using either fractional 
delay FIR filters or DFT-based processing in order to obtain an Aligned Pulse Matrix that has rank of nearly one6.  
The amount of alignment imparted to each pulse is sent as side information in the sequence ∆1, ∆2, ∆3, … as shown 
in Figure 2. If desired, the Aligned Pulse Matrix can be reshaped by putting multiple pulses per row – proper 
reshaping has been shown to maximize the compression ratio6; in this paper, though, we focus on the single-pulse-
per-row case, although the results are applicable to the more general case.  Because W is typically larger than the 
true pulse width, after alignment any excess columns outside the pulse width can be trimmed.   
Let the size of this trimmed Aligned Pulse Matrix P be p×n: there are p pulse rows and each pulse row has n 

samples. The resulting nearly rank-one matrix P is decomposed using the SVD, which is used create H
11

~
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exactly rank-one approximation to the Aligned Pulse Matrix, where u1 and v1 are the left and right singular vectors 
(respectively) of corresponding to the largest singular value.6  The information that is needed to reconstruct the 
signal is: 

1. The n×1 right singular vector (RSV) 1v  (i.e., the prototype pulse) 

2. The p×1 left singular vector (LSV) 1u  (i.e., the reconstruction magnitudes and phases)  

3.  The p-1 time shifts (∆1, ∆2, ∆3, …, ∆p-1) 
4.  The gating parameters G, W, and T (integers). 
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Figure 2: Overview of SVD-Based Compression 
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Figure 3: Pulse Gating  and Pulse Matrix Formation 

 
Effective methods for coding the singular vectors u1, v1 and the alignments ∆1, ∆2, ∆3, … have been determined.6  
The compression ratio achieved by this single-pulse-per-row method is6,7  
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From the denominator in the equation we note that the compression ratio is more sensitive to the value of p than to 
n, and that is the factor that motivates the exploration of putting multiple pulses per row6.  However, if we can 
eliminate l rows from the pulse matrix P prior to the SVD processing, then only p – l  rows remain and the 
compression ratio becomes  
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which clearly will increase as l increases (i.e., as more rows are eliminated).  The focus of this paper is to optimally 
choose which rows (i.e., pulses) to eliminate from the pulse matrix to allow increased compression ratio without 
significantly degrading the location accuracy.  To answer this we look to the other compression approach we have 
proposed that uses non-MSE distortion criteria created specially for emitter location applications.4,5 
 

3. NON-MSE DISTORTION CRITERIA AND PULSE ELIMINATION 
To choose an appropriate distortion criteria for TDOA/FDOA applications it is important to understand the 

impact of  compression on the TDOA/FDOA accuracies rather than its impact on the signal fidelity (e.g., MSE) as is 
commonly done in compression algorithms.  We use the Cramer-Rao bounds (CRB) for TDOA/FDOA estimates3 to 
gain insight into what signal characteristics impact TDOA/FDOA accuracies.  From the structure of the CRBs one 
can determine what parts of the signal are most important for estimating TDOA/FDOA and use that as a guide for 
establishing distortion measures.  In particular, we use this approach here to determine the proper way to eliminate 
pulses. 

To ease our analysis we make the following assumptions on the complex baseband signal: (i) it consists of a 
train of pulses that have approximately equal pulse amplitude, (ii) it has been collected over the interval 

[ ]2,2 TTt −∈ , (iii) its temporal centroid3 is at t = 0, (iv) its spectrum is inside the band [ ]2,2 WWf −∈ , and its 

spectral centroid3 is at f = 0.  All but the first assumption are easily assured in practice through proper “front-end” 
processing.  While the first assumption rarely holds in practice it simplifies the analysis enough to allow derivation 
of theoretical results that can be compared to simulation results to validate the processing.  The processing itself is 
applicable even when the first assumption does not hold.   

 
1. Background On Non-MSE Distortion Criteria 

After cross-correlation the output SNR is given by 
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where WT is the time-bandwidth product (or coherent processing gain), with W  being the noise bandwidth of the 
receiver and T  being the duration of the received signal and effSNR is a so-called effective SNR3.  The accuracies 

of the TDOA/FDOA  estimates are governed by the Cramer-Rao bound (CRB) for TDOA/FDOA given by3 
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where Brms  is the signal’s RMS bandwidth in Hz given by 
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with )( fS being the Fourier transform of the signal )(ks and rmsD is the signal’s RMS duration in seconds given 

by 
 

∫

∫

−

−=
2

2

2

2

2

22

2

)(

)(

T

T

T

T
rms

dtts

dttst
D , 

 
where, without loss of generality, it is assumed that the signal is centered at t = 0 and the time interval over which 
the signal exists is symmetric around t = 0.  The denominators in the equations for the RMS widths can be 

considered as normalizing factors on 2|)(| fS and 2|)(| ts , respectively, so that these equations have the form 

identical to the equation for variance; thus, the root-mean-squared (RMS) terminology. 
In TDOA/FDOA applications it is crucial that the compression methods minimize the impact on the 

TDOA/FDOA estimation error rather than stressing minimization of MSE as is common in many compression 
techniques.  We have argued4 that compression algorithms suitable for TDOA/FDOA applications should strive to 
maximize the denominators of the CRBs.  Our work to date4,5 has focused on choosing frequency components 
within a transform coding setting that will maximize the denominator of the TDOA CRB.  In this paper we are 
interested in addressing the issue of eliminating pulses, which will have the largest effect on the RMS duration, and 
therefore will have the largest effect on FDOA accuracy.  

 
2. Pulse Elimination Method 

For our work here we assume that SNR ≈ DNR and SNR >>1; future work will address other cases.  Using these 
SNR assumptions gives  
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and then using this and  
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in the FDOA part of (1) gives 
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where C1 is some constant.  In (2) we see that the pulses that are near the ends of the collected signal interval are 
more important than those in the center of the data, since the pulses near t = 0 have little contribution to the integral 
in (2).  This insight motivates the following processing steps: 
 

1. Select the number of pulses, η, is to be deleted.  

2. Select: Compute ∑ ∆∆=Ω 22 )()( tnstn ii for each pulse. 

3. Order: Order the iΩ  in the descendent order, ,ji Ω≥Ω ji >  

4. Delete: Delete the smallest η number of iΩ . 

5. SVD:  Use our previously proposed SVD compression method6,7 to compression the rest of undeleted 
pulses. 

6. Estimation: Use the ambiguity function to estimate the TDOA/FDOA3. 
 
Note that Step 2 accounts for the different pulse amplitudes and therefore the equal amplitude assumption is made 
only for the analysis of the algorithm. 
 
3. Analysis of Pulse Elimination 

While (2) describes the impact of pulse elimination on the accuracy of the FDOA estimate, we’d like a more 
explicit result.  Under the equal-amplitude pulse assumption we can write the pulse train of N pulses as 
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where so(t) is the prototype pulse, ti is the time position of the ith pulse, and φi is the phase of the ith pulse.  Using this 
in (2) we get 
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This shows that under the equal pulse amplitude assumption, pulses should be eliminated starting with the center 
pulse and working bi-directionally outward. 

We’d also like a result that allows us to understand the effect that pulse elimination has on the accuracy of the 
TDOA estimate.  Similar to (2), when DNRSNR ≈  and 1>>SNR  we get 
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From (3) and properties of the Fourier transform we have that 
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where we have used the inequality YXYX +≤+ .  Using this result in (5) then gives 
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This shows that eliminating l of the N pulses would increase the bound in (6) to 
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Although there is no guarantee that the cross-correlation processing should achieve the bound in (7) it still gives 
some motivation to expect that the TDOA estimation error’s standard deviation is likely to vary with l as )/(1 lN − .  
Note that the effect on TDOA shown in (7) does not depend on which pulses are eliminated; the effect in (7) is 
simply due to the loss of processing gain due to elimination of pulses. 
 

4. SIMULATION RESULTS 
To illustrate the capabilities of SVD-based compression with pulse elimination we present some simulation 

results using a simulated radar signal (complex baseband) chosen to satisfy the assumptions made above.  The signal 
is a train of pulses having linear FM modulation within each pulse.  The simulated signal had the following 
parameters: 80 pulses, pulse width (PW) of 40µsec, a pulse repetition interval (PRI) of 70µsec, a maximum FM 
frequency deviation of ±2 MHz, and a sampling rate of 4.92346 MHz§.  Monte Carlo simulations were performed to 
evaluate the standard deviation of the TDOA/FDOA estimation errors, where 400 runs were done for each 
evaluation. 

The first set of simulation runs were performed to establish the baseline performance of the SVD-based 
compression method6,7 without pulse elimination.  The results are shown in Figure 4 where the estimation accuracy 
is assessed as a function of SNR (with SNR = DNR) both with and without SVD-based compression.  Surprisingly, 
even though the compression ratio is 88.8:1, the compressed signal actually yields better TDOA/FDOA accuracy at 
the lower SNR values (and equivalent accuracy at the higher SNR values).  This is due to the fact that the SVD 
provides and inherent de-noising property6,8; however, the de-noise seems to have less effect on the FDOA accuracy 
– we are currently working to better understand the nature of the SVD-based de-noising improvements. 
 

                                                           
§ Notes: (i) The PRI was set low for convenience to reduce the total number of samples used in the processing; this 
ensures that the time necessary to run simulations is not unreasonably long; (ii) The sampling rate was chosen so the 
sampling interval was incommensurate with the PRI to ensure that the sampled pulses were not perfectly aligned. 



 

Figure 4: Simulation results showing standard deviation of TDOA/FDOA estimation error for a simulated 
radar signal when compressed 89:1 using SVD-based compression of the full pulse matrix (i.e., without pulse 
elimination); in each plot the SNRs of the two cross-correlated signals are set equal to each other as they are 
varied over a range.  For comparison, results are shown for the case of no compression. 

 
As we noted above, if pulses are eliminated according to the guidance of (2) then we expect negligible 

degradation in the FDOA accuracy up to a point; however, we would expect the TDOA estimation error standard 
deviation to increase according to (7).  Fortunately, the results in Figure 4 indicate that, due to the de-noising, we 
have TDOA accuracy to “spare”; this, then is a perfect setting for applying pulse elimination.  To first see how many 
pulses can be eliminated we ran simulations at the point SNR = DNR = 10 dB and evaluated the error standard 
deviation after SVD compression with pulse elimination, as shown in Figure 5, where the standard deviation values 
are presented relative to the value achieved without compression.  For this case we see that we can eliminate half of 
the 80 pulses without suffering degradation in the FDOA accuracy, but there is some degradation of the TDOA 
when half of the pulses are eliminated.  It should be noted that the shapes of the curves using “partial” compression 
roughly match the shapes predicted by (4) and (7). 

Finally, for the case of eliminating half of the 80 pulses, we present results in Figure 6 that show how the 
TDOA/FDOA accuracy varies with SNR.  Through elimination of half the pulses the compression ratio increases 
from 89:1 to 105:1 but the TDOA/FDOA accuracy is, remarkably, still roughly the same as when no compression is 
used. 
 
 

5. CONCLUSIONS 
We have fused two different approaches we have been independently pursuing for data compression for emitter 

location processing.  The first method uses the SVD to exploit the pulse-to-pulse redundancy in a radar pulse train.  
The second uses new non-MSE distortion measures to guide the development of data compression methods that 
remove location-irrelevant parts of the signal.  In the earlier investigations of the SVD methods it was recognized 
that elimination of pulses from the pulse matrix is desirable since it increases the compression ratio that can be 
achieved.  However, questions remained regarding how to choose which pulses should be removed and what impact 
that removal would have on the TDOA/FDOA accuracy.  In this paper we showed that the non-MSE approach 
provides answers to those questions.  Through simulations we have shown that this method has great potential: 
achieving compression ratios of around 100:1 with virtually no degradation in the TDOA/FDOA accuracy. 
 



 

Figure 5: Simulation results showing the effect that discarding pulses has on the TDOA/FDOA estimation 
error standard deviation.  The term “partial comp” means that SVD compression was done on a partial pulse 
matrix, after pulse elimination. For comparision, results are shown for the case without compression. 

 
 

 

Figure 6: Simulation results showing standard deviation of TDOA/FDOA estimation error for a simulated 
radar signal when compressed using SVD-based compression.  The three curves compare the cases (i) without 
compression, (ii) full SVD-based compression (i.e., no pulse elimination) with compression ratio of 89:1, and 
(iii) SVD-based compression where half of the pulses are eliminated to give a compression ratio of 105:1. 
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