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Abstract 

 

DATA COMPRESSION FOR INFERENCE TASKS IN WIRELESS 

SENSOR NETWORKS 

 

 

                                                                     by  

 

                                                                 Mo Chen 

 

 

Chair: Mark L. Fowler 

 

In order for wireless sensor networks to exploit signal, signal data must be collected at a 

multitude of sensors and must be shared among the sensors. The vast sharing of signals among 

the sensors contradicts the requirements (energy efficiency, low latency and high accuracy) of 

wireless networked sensor.  Although many approaches have been proposed in the past (routing, 

sleep modes, low-power electronics, etc.), a new aspect is proposed here: using data compression 

methods as a tool for accomplishing the optimal trade-off between rate, energy, and accuracy in a 

sensor network.  The ability of data compression to provide energy efficiency rests on the 

favorable trade between computational energy and transmission energy recently recognized in the 

literature.   

Because a primary task of multi-sensor systems is to make statistical inferences based on the 

data collected and shared throughout the sensor system, in the viewpoint of rate, energy, and 

accuracy, it is important to design data compression methods that enable rapid and low-energy 

consumption sharing while causing only minimal degradation of the quantity of these inferences. 

By recognizing that MSE-based compression algorithms are not appropriate for such tasks, this 

dissertation stresses the development of distortion measures that effectively capture the impact of 

compression on the accuracy of the inferences.  Furthermore, sensor systems generally have 



 v 

multiple inference tasks to accomplish simultaneously, and these multiple inferences generally 

have conflicting requirements on compression and finding the right way to balance these conflicts 

is crucial, this dissertation develops theory and algorithms that will allow the optimal trade-off 

between these conflicting goals.  On the other hand, these multiple tasks may occur sequentially 

(and a step in the sequence could require simultaneous inferences).  A task-embedded 

compression method is developed to compress and send data in a sequential manner that allows 

optimal attainment of the sequential tasks.   

The contributions of this dissertation include: (i) strengthening data compression as a 

powerful tool for achieving optimal tradeoff among energy, latency and accuracy in sensor 

networks; (ii) developing new fundamental framework for compression in sensor networks that 

recognize the inferential characteristics of sensor networks; (iii) developing a significant 

framework for the “compression for multiple inferences” area that addresses multiple 

simultaneous and sequential inferences (no results in the literature currently address this 

important issue); The results of this dissertation will provide the engineer with a systematic 

means for addressing Rate-Energy-Accuracy issues across the spectrum of sensor network types – 

from networks of myriad microsensors to networks of several macrosensors. 
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CHAPTER 1                 

Introduction 
 

 

 1.1 Wireless Sensor Network 

 
Advances in sensor and communication technology have focused interest on using wireless 

sensor networks, which are formed by a set of small unterthered sensor devices that are deployed 

in an ad hoc fashion to cooperate on sensing a physical phenomenon, making the inferences, and 

transmitting the data [12]-[20]. Typically, each individual sensor can sense in multiple modalities 

but has limited communication and computation capabilities. Wireless sensor networks hold the 

promise of revolutionizing sensing in a wide range of application domains because of their 

reliability, accuracy, flexibility, cost-effectiveness, and ease of deployment.  

Wireless sensor networks share many of the challenges of traditional wireless networks, 

including limited energy available to each node and bandwidth-limited, error-prone channels. 

Among these challenges, energy is typically more limited in wireless sensor networks than in 

other wireless networks because of the nature of the sensing devices and the difficulties in 

recharging their batteries. Usually, the following three metrics are used to evaluate the design of 

any wireless sensor networks [18]:  

1. Energy efficiency/system lifetime: As sensor nodes are battery-operated, the design of 

the wireless sensor network must be energy-efficient to maximize system lifetime.  

2. Latency: The phenomena of interests or inference results must be reported within a 

given delay.          



 2 

3. Accuracy: Obtaining accurate information is the primary objective. 

There are also constraints on fault tolerance and scalability [18] but we don’t address those 

here. Any good design of wireless sensor networks must be adaptive to obtain the optimal 

tradeoff over metrics assessing energy efficiency, communication latency, and accuracy of the 

conveyed information; for example, a well designed network achieves the desired accuracy and 

delay while optimizing the sensor energy usage, or maximizes the inference accuracies given the 

desired energy expenditure and small latency.  

 

1.2 Importance of Data Compression for Energy-Efficiency in Wireless 
Sensor Networks 

        

Energy efficiency in wireless sensor networks has principally been addressed through routing 

protocols, sleeping strategies, low-power architectures, and energy-efficient modulation schemes. 

Accuracy is generally controlled through optimal processing strategies as well as using accurate 

sensors deployed in optimal ways.  Latency and channel capacity issues in sensor networks can 

be addressed through routing strategies and data compression [16],[17]. It is very important to 

understand the interplay between the compression method and routing. In the following, by 

investigating a well recognized routing scheme, we demonstrate that data compression can bring 

more energy efficiency to a network than does recently proposed combinations of routing and 

data aggregation. 

   There can be many different scenarios for sensor networks; here we focus on the so-called 

“reach-back” issue: communicating the data collected within the network back to a single 

information sink (e.g., base station, central command, etc.) with minimal latency and energy use. 

Energy efficiency in reach back has been previously addressed by many researchers including 

[20], where energy efficiency was measured in terms of network lifespan. A related study has 
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been carried out in [17] to show the need for compression to address the latency issue. The 

usefulness of data compression for energy efficiency is less clear.  

     Before discussing our results, we put our study into perspective with recent related results 

in [17] and [20]. The results in [20] address energy efficiency for reach-back through use of a 

combination of routing and data fusion/aggregation (called “LEACH”). By using data 

fusion/aggregation to combine two or more collected data sets that become correlated during 

transmission of the data through the network towards the sink, LEACH significantly reduces the 

overall data needed to be transferred and increases network lifespan. However, it is not clear in 

these papers how data fusion/aggregation can be relied on in general in a sensor network. In 

particular, in [20] the data from sensors grouped into clusters get fused through processing, 

where a stated assumption is that this fusion specifically implements beamforming; therefore, 

data aggregation is valid in this application setting. However, it is not clear that 

fusion/aggregation is possible in a general sensor network setting. Thus, the studies in [20] 

spurred our interest in developing a general framework using data compression rather than 

fusion/aggregation that would give similar gains in energy efficiency. 

The results in [17] don’t consider reach-back but rather the task of conveying the network’s 

total collected information to each and every sensor node. The results in [17] establish 

fundamental information theoretic limits on the rate of information transferal through the 

network and show that data compression is needed to transfer the data without latency under a 

channel rate constraint. But for us, the key idea established in [17] is the effectiveness of 

combining classical source codes with routing algorithms and that this is competitive with 

distributed compression methods such as in [16], which remove common information between 

two nodes without sharing any data between them. 
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For ease of comparing results, we use the same radio model used in [20] the radio dissipates 

50 nJ/bit in the transmitter circuitry, 50 nJ/bit in the receiver circuitry, and 100 pJ/bit/m2 for the 

transmitter amplifier. Because we aren’t using a specific compression algorithm in this part of 

our study it is hard to specify how much energy is spent compressing the data, so we use the 

same energy cost that is used for data fusion/ aggregation via beamforming in LEACH, namely 5 

nJ/bit/message. To compare our methods with LEACH we ran tests using the following scenario: 

100 sensors, randomly placed uniformly inside a 50m×50m square of real estate. LEACH 

randomly selects 5% of its nodes as cluster heads; data from all the nodes in a cluster are 

beamformed together (data aggregation). This gives LEACH an inherent “compression ratio” of 

20:1 since at each cluster head, 20 signals get beamformed into one. One of the key published 

conclusions for LEACH is that sending directly to the sink is inferior to LEACH; however, this 

really is an unfair comparison since the direct transmission method did not use any form of 

compression in [20]. Therefore we performed a simple simulation to show that using general 

compression without any routing provides better network lifetime– thus, it is LEACH’s 

beamforming-achieved compression, not the routing protocol, that achieves the energy 

efficiency. Of course, it is granted that the routing does have the advantage that it uniformly 

spreads sensor deaths over the network. 

A. Direct Transmission with Non-Distributed Compression 

We simulated LEACH as well as direct transmission with compression, with the later using a 

compression of 6:1 and 10:1. As in [20], each “round” of network transmission consisted of each 

node receiving 2000 bits of data and the network transferring the data to the sink. In LEACH, 

cluster heads are randomly selected on each round and the remaining nodes are assigned to 

clusters. Each cluster head receives 2000 bits from each of its cluster nodes and beamforms them 
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into a single 2000 bit signal, which is then transmitted from the cluster head to the sink. 

Alternatively, direct-with-compression compresses the 2000 bits received at each node and then 

transmits the resulting bits to the source. The lifetime of the network is assessed by noting the 

number of nodes still alive at each round, where a live node is taken to be a node that has energy 

remaining. As mentioned above, comparable amounts of computational energy are assumed to be 

spent for beamforming and compression. 

Our study shows that if a compression ratio of 6:1 is achievable at each sensor prior to 

sending the data directly to the sink, then the time it takes for 50% of the nodes to die is 

comparable to LEACH, as seen in Figure 1.1. Obviously, higher compression ratios further 

improve the direct w/compression curve, as is shown in Figure 1.1 for the case of 10:1, where the 

direct-with-compression now clearly outperforms LEACH. 

This result is important because previous results [20] indicated that direct transmission was 

to be avoided and that special routing schemes were the answer to the energy efficiency problem. 

In our results we see that it is not the routing in LEACH that makes the difference, it is the 

beamforming-achieved compression. In understanding our result it is important to keep in mind 

that the direct method has no energy cost for reception since sensor nodes don’t receive any 

transmissions; that compensates for the excess compression ratio that LEACH is assumed to 

have here (20:1 vs. 6:1 or 10:1). 

        However, it should also be mentioned that [20] points out that a problem with the direct 

method is that the death of nodes begins with the nodes farthest from the sink and sweeps 

through the network towards the sink– this is generally undesirable and one nice feature of 

LEACH is that node deaths are uniformly distributed. Clearly direct-with-compression isn’t 

directly applicable but it does point out the importance of data compression. 
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Figure 1.1: Non-distributed compression improves network lifespan when using direct transmission. 

 
                           

B. Direct Transmission with Compression Exploiting Spatial Redundancy 

The direct-transmission method discussed above does not exploit any redundancy between 

signals received at closely located sensor nodes. As a simple demonstration of the effectiveness 

of exploiting spatial redundancy we ran simulations to characterize the effect of exploiting this 

spatial redundancy. The results are shown in Figure 1.2 where we have simulated the effect of 

signals within a radius of 10m of a randomly selected set of primary nodes (making up 10% of 

the total number of nodes) as having virtually the same information content. This is more like 

LEACH but with beamforming-based aggregation replaced by general data compression. The 

spatially similar data is compressed and then the remaining data sets are compressed using non-

spatial methods having a compression ratio of 6:1, after which all compressed data is sent to the 

information sink using direct transmission. The results in Figure 1.2 show the potential of 

exploiting this spatial redundancy through routing and local compression (rather than distributed 

compression). By randomly rotating which sensors are used as the central compression sites the 

“sweep-of-death” for direct transmission is eliminated as it is in LEACH. The reason that this 

scheme far outperforms LEACH even though its CR is only 6:1 compared to LEACH’s 20:1 is 
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Figure 1.2: Result of showing improvement using compression with a simple routing scheme. 

 

that we have also reaped the benefit of compression as each sensor sends its data to the cluster 

head.                        

It is important to realize that we are not proposing that either of these two direct-transmission 

approaches should be considered as viable real-world methods; rather we are simply using them 

to illustrate that data compression plays an important role not only in controlling latency in 

sensor networks (as in [20]) but plays an important role in addressing network energy efficiency. 

From above observations, we thereby assert that data compression – normally viewed as a 

primary tool for the capacity/latency vs. accuracy trade-off – is a natural tool for achieving the 

desired trade-off between energy, accuracy, and latency in sensor networks.  This expanded role 

of compression arises as follows:  Transmission of data is one of the most energy-expensive 

tasks a node undertakes – thus, using data compression to reduce the number of bits sent reduces 

energy expended for transmission because the transmission energy is linearly proportional to the 

number of data to transmit [20][85].  However, compression requires computation, which also 

expends energy.  Fortunately, trading computation for transmission has potential to save energy: 

a recent paper [15] asserts that typically on the order of 3000 instructions can be executed for the 
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energy cost required to transmit one bit over a distance of 100 m by radio – thus, the trade favors 

spending computation to reduce the amount of transmission needed.  

C. Rate-Energy-Accuracy function for Sensor Network Compression 

Classical data compression theory relies on tradeoffs between rate (R) and distortion (D) in 

terms of a R-D function. Rate is usually measured in terms of bits/sample and distortion is often 

measured as a mean square error between the original and reconstructed signal. In the classical 

view, rate impacts latency and distortion impacts the accuracy of the signal reconstruction. As 

we explored above, in sensor networks the rate can also impact energy efficiency. Thus, for 

sensor networks we propose the use of a 3-D extended version of the R-D function: the Rate-

Energy-Accuracy (R-E-A) function. The rate axis equals the length of compressed data and the 

accuracy axis is proportional to distortion caused by compression and reflects the effect of the 

compression on the final use of the data while the energy axis assesses the total energy 

(compression energy and transmission energy) needed to move the compressed data to the 

desired destination. Clearly, decreasing the rate decreases the amount of transmission energy 

spent and the duration of transmission time but a decreased rate comes at the expense of 

computational energy and time from compression algorithms. A simple characterization of this is 

                                              )()()( RERERE TC +=∆  ,                                                   (1.1a) 

                                              )()()( RTRTRT TC +=∆  ,                                                    (1.1b) 

where )(RE∆  and )(RT∆ are the changes in energy and time respectively due to compression to 

a rate of R, )(REC  and )(RTc are the computational energy and time used to compress to R, 

similarly, )(RET  and )(RTT are the energy and time needed to transmit at the rate R, 

respectively. To maintain certain accuracy (quality of information), if R decreases, both )(REC  

and )(RTc  increase (better compression requires more computation), in the meantime, 
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)(RET and )(RTT  decreases (more compression requires less transmission). Clearly, these 

measures depend on the computational efficiency of the compression algorithm, the energy 

efficiency of the computational architecture, and the energy efficiency of the transmission 

hardware. If we can specify a desired operating point in R-E-A space, then we develop 

compression algorithms (as well as low-power computing & transmitting architectures) that 

achieve it. However, optimizing of such multi-objective functions (1.1) should be based on the 

trinity of compression algorithm, hardware architecture and transmission, which is a horrible task 

even if it seems possible in theory. An alternative way to balance the trade-off between 

)(RET and )(REC (or )(RTT and )(RTC ) is to apply the idea of separate optimality as in 

communication [1]. More specifically, for a given rate, we can choose to maximize the accuracy 

using the compression algorithm which is as efficient as possible (minimizing the computation).  

1.3 Compression for Inference Tasks in Wireless Sensor Networks 

 

The primary task of sensor networks is to make statistical inferences based on the data 

collected throughout the network, it is important to design compression methods that cause 

minimal degradation of the accuracy of these inferences. Traditionally, the mean-square-error 

(MSE) is the primary distortion measure to guide the compression algorithms in literature. MSE 

is a natural choice of the distortion measures for the application whose goal is to reconstruct the 

data as near to the original data as possible. However, MSE is not able to capture the effect of the 

compression error on the final use of the data – namely, the making of statistical inferences. For 

example, if the inference task is estimation, then the accuracy measure should capture the impact 

of the compression on the estimation accuracy instead of the reconstruction accuracy. 

Compression with the goal to maximize the inference task accuracy must be found instead. The 

key to addressing this question is to use distortion measures that accurately reflect the ultimate 
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performance on the tasks.  For estimation tasks the ultimate performance is the variance of the 

estimation error (at least in the unbiased estimate case) and MSE is only part of what determines 

the variance. Similarly, for decision tasks the ultimate performance is probability of detection.  

To design compression algorithms with respect to these performance goals it is essential to have 

appropriate, tractable metrics that measure the impact of reducing the rate on the inference 

performance.  For estimation we propose using the Fisher Information Matrix (FIM) to provide a 

guide to how to reduce the rate while minimizing the impact on estimation performance.  For 

decision we propose exploring the use of the Chernoff distance to derive the distortion measures 

for the compression algorithms [21]-[28], [60], [75]. 

 Data compression for distributed multi-sensor systems previously considered in the literature 

(See the details in Chapter 3) all hold the view that multiple sensors encode received signals and 

transfer the coded data directly to a central inference base station.  Thus, these prior results are 

not made in a true sensor network context.  For example, they don’t consider the energy 

constraint as mentioned above.  Nor do they consider the impact and needs of inter-sensor 

communication and cooperation. An even more important aspect not considered in these 

previous results is that sensor networks may have multiple inference tasks to accomplish (either 

simultaneously or sequentially).  Multiple inferences may have conflicting compression 

requirements and finding the right way to balance these conflicts is crucial.  Thus, another of our 

assertions is that compression for sensor networks must consider the case of multiple inferences.  

In a sensor network there are a lot of cases where inference tasks are naturally done 

sequentially and therefore the sharing of data to complete those tasks can also occur sequentially.  

As an example of multiple inferences, consider the case where a sensor network is deployed to 

detect and then locate vehicles.  This is a case of multiple sequential inferences where the 
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compression can be done sequentially as well.  For example, at first sensors might share their 

collected data for the purpose of improved detection.  After detecting the presence of a vehicle, 

data would be shared among sensors to estimate the vehicle’s position, direction and velocity.  

Our proposed viewpoint for a novel approach to such a compression scenario is what we call 

task-embedded compression: at each task stage, send only that data needed to supplement the 

already-delivered data for optimal processing for the current task.  For example, (i) the data 

stream that is shared during the detection phase is optimally compressed for detection, then (ii) 

the data stream that is shared during the estimation phase is the additional data “layer” needed to 

perform optimal estimate.  It should be pointed out that in the last task of this example there 

might be simultaneous multiple inferences (estimate position and velocity) that may very well 

have conflicting data compression requirements – thus, we must find ways to compress data that 

allow the proper trade-off in this conflict.  The key tools we bring to bear on this area are: (i) the 

use of multiple distortion measures that are designed to assess the quality of data subsets for use 

in the multiple inferences, and (ii) the use of numerical optimization methods to achieve desired 

trade-offs based on these quality assessments.  

This dissertation is organized as follows.  In Chapter 2, we review the basic elements of 

inference tasks (estimation and detection) and the framework of compression (transform coding). 

In Chapter 3, we first limit our attention to the single inference task case and propose using 

Fisher information and Chernoff distance to derive the effective distortion measures for 

estimation and detection task respectively. In Chapter 4, we attack optimization of compression 

for the general simultaneous multi-parameter estimation problem and simultaneous multi-

inference tasks (joint detection/estimation).  In Chapter 5 we consider a sequence of inference 
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tasks. Chapter 6 presents conclusions from this work.  Some mathematical deduction needed for 

the body of the dissertation and some supplemental materials are in Appendices.    
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CHAPTER 2 

Overview of Compression System for Inference Tasks 

              

The overall nature of the transportation of sensed data can be vastly different for 

different scenarios; however all share one common thread: sending data collected in one 

place to some other place where it is processed.  As illustrated in Figure 2.1, for the work 

we report in this dissertation, we limited our focus on the compression of data received at 

one sensor node (S1), which is then transmitted to a second node (S2) where it is 

combined with data received locally at S2 to obtain some estimates of some desired 

environmental parameters that is reflected in the data or to make some decision of the 

presence of anomalies from the data. This scenario is likely to occur as data is routed 

through a micro-sensor network; it also is common in macro-sensor networks.  Our 

approach can also be applied to the case where the data at multiple sensors must be 

compressed and transmitted to a central node where estimation is done;  We are 

particularly (although not exclusively) interested in one aspect of cooperative signal 

processing where it is not possible to perform an inference (detection or estimation) 

based on a single sensor’s data (e.g., centralized detection, source location), because in 

scenarios where it is possible for each sensor to make an inference it is likely to be more 

efficient to transmit sensor-local inference results that are then fused (decentralized 

system).  However, it is generally the case that better inferences can be made when the 

fusion center has access to the raw data rather than sensor-local estimates; thus, the 
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Figure 2.1: System of Compression for inference tasks, 1x and 2x are digitized sensed measurements 

at sensor  S1 and S2, and 1x̂ is the decompressed data at sensor S2. 

 

proper design of a sensor network should consider the trade-offs between fusing sensor-

local estimates and making centralized estimates based on compressed sensor data. 

In the following, each component of the system in the system of Figure 2.1 will be 

further explained:   

2.1 Estimation  

Given the received signal as 

                                        ][];[][ nwnnx += θη ,          12/,,2/ −−= NNn K                (2.1)        

where ][nx is the result of sensing measurement at the time instant n , ];[ θnη  is a 

deterministic function whose dependency on θ  is assumed known; ],,,[ 21 p

T θθθ K=θ  is 

the unknown, 1×p  deterministic parameters sought to be estimated, and ][nw  is the 

measurement noise. The measurement ][nx  is random due to that ][nw is modeled as 

random noise and its probability distribution ( )|][,],1[( θnxxp K ) is functionally 

dependent on the parameter vector θ . The equation (2.1) can be written in vector form as 

                                                          wηx θ +=                                                            (2.2) 
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In judging an estimation problem, it is important to know the maximum estimation 

accuracy that can be obtained with the measurements. As is well known, the Cramer Rao 

(CR) bound provides the powerful lower bounds on the estimation accuracy [4][73]. 

Further, since they are lower bounds for any estimator, their parameter dependences 

reveal characteristic features of the estimation problem.       

If we let )(ˆ xθ denote some unbiased estimate of unknown parameter vector θ based 

on the measurement of x  and it is assumed that the PDF )|( θxp satisfies the “regularity” 

conditions  

                                                     0
);(ln

=





∂

∂
θ

θxp
E     for all θ  ,                                 (2.3) 

where the expectation is taken with respect to );( θxp , then the covariance matrix of 

estimation error of any unbiased estimator θ̂ satisfies  

                                                [ ] )()ˆ)(ˆ( 1
ˆ θJCθθθθ
θ

−≥=−− TE                                       (2.4) 

where 0≥ is interpreted as meaning that the matrix is positive semidefinite. The Fisher 

information matrix )(θJ  is given as  

                                              [ ]












∂∂
∂

−=
ji

ij

p
E

θθ
);(ln

)(
2 θx

θJ ,      nji ≤≤ ,1 ,                      (2.5) 

where the derivatives are evaluated at the true value of  θ  and the expectation is taken 

with respect to );( θxp . Moreover, for a positive semi-definite matrix the diagonal 

elements are nonnegative. Hence,  

                                                   [ ] 0)(1
ˆ ≥− −

ii
θJC

θ
                                                   (2.6) 

and therefore 
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     Whenever it is desired to estimate )g(θα =  for g , an r -dimensional function, then,  
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Geometrically, the covariance matrix 
θ

C ˆ can be visualized in the space of the 

estimation error by the concentration ellipsoid  

                                         κ=−− − )ˆ()ˆ( 1
ˆ θθCθθ
θ

T                                                    (2.9) 

where κ is a constant that determines the size of the p-dimensional region enclosed by 

the surface. In these terms an equivalent formulation of the CR inequality reads: For any 

unbiased estimate of θ  the concentration ellipsoid (2.9) lies inside or on the bound 

ellipsoid defined by  

                                                     κ=−− )ˆ()ˆ( θθJθθ T .                                             (2.10)  

The size and orientation of the ellipsoid (2.10) can be best described in terms of the 

eigenvalues and eigenvectors of the symmetric pp×  matrix J . To this end the 

eigenvalue problem  

                                                    iii ςJς λ=  ,     pi ,,1K= ,                                        (2.11)              
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has to be solved, where 1λ ,…, pλ  are eigenvalues of J  and pςς ,...,1  the corresponding 

eigenvectors. The mutually orthogonal eigenvectors coincide with the principal axes of 

the bound ellipsoid and form an orthogonal matrix ( )pςςA ,,1 K=  that diagonalize J   

                                           









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=

n

T

λ

λ

0

01

OJAA .                                               (2.12) 

Thus, rotating the coordinate axes by means of the transformation TA in the new 

variables defined by   

                                                )ˆ( θθAξ −= T .                                                     (2.13) 

then the ellipsoid (2.13) takes the form  

                                           κλ ==−− ∑
=

n

i

ii

T

1

2)ˆ()ˆ( ςθθJθθ .                                    (2.14) 

This is in the coordinates iς  the equation of an ellipsoid in its standard form with 

semiaxes of length iλκ / . The bigger iλ , the more accurate on this semiaxis iς , on the 

contrary, the smaller iλ  , the wider estimation error range will be, if 0=iλ , then the 

value of the corresponding coordinate iς  can be chosen arbitrarily, i.e. (2.14) describes a 

degenerate ellipsoid extending to infinity in this coordinate direction. The Fisher 

information matrix exhibits the information content of the estimation problem. Thus, 

physically 0=iλ  means that there is no information at all about the corresponding 

coordinate iς  , i.e., iς  is unobservable.   

        CR can not only provide us an intuitive understanding and a deeper insight into the 

compression for estimation problem by investigating the influence of compression 
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(selection or quantization) on the estimation accuracy, but also CR is asymptotically 

achievable by taking the maximum likelihood estimation (MLE) as estimation procedure.  

        The MLE for a vector parameter θ  is defined to be the value that maximizes the 

likelihood function );( θxp  over the allowable domain for θ . Assuming a differentiable 

likelihood function, the MLE is found from   

                                                        0
);(ln

ˆ

=
∂

∂

= ML

p

θθ

θx

θ
,                                         (2.15) 

 If we let mθ̂ designate the maximum-likelihood estimate of θ  based on N  i.i.d. random 

variables and 0θ  be the true value of the parameter, mθ̂ converges in law (also called 

convergence in distribution) to a normal random variable: That is 

                                         
law

m YN →− )ˆ( 0θθ .                                                (2.16) 

where 

                                          ))(,0(~ 0

1 θJ −NY .                                                  (2.17) 

The ML estimate mθ̂  is asymptotically efficient in the sense that asymptotically it attains 

the Cramer-Rao lower bound as ∞→N . 

2.2 Detection 

  

Detection can be formulated as a binary statistical hypothesis test. If 0H  and 1H  refer 

to the hypotheses that the target is absent or present, respectively, we have 
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,                                                (2.18) 
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where 0H  and 1H  have nonzero priori probabilities 0P  and 1P , respectively. Under 

hypothesis 0H  and 1H , x  is distributed according to the pdf’s 0p  and 1p . Besides a 

function of x , 1p  is also dependent on the parameter vector θ . The likelihood ratio 

)(/)()( 01 xθx,x ppL =  is a sufficient statistic for detection, i.e., all we need to know is 

the likelihood ratio for deciding between the hypotheses 0H  and 1H . When the 

parameter vector θ  is unknown, the generalized likelihood ratio is usually applied by 

replacing θ  with its MLE (2.15).  In the subsequent equations in this section, θ  is 

omitted for the simplicity. The likelihood ratio is invariant to invertible operations such 

as the transform in the transform coder discussed in the next section.  

Under a variety of optimality criteria, the detection algorithms take the form of an 

LRT  

                                                   τ
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)(
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1
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p
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<

>
=

x

x
x .                                                (2.19) 

where τ  is an appropriate threshold. The value of τ  depends on the optimality criterion. 

In a Neyman-Pearson test, the threshold τ  is chosen such that, for a given probability of 

false alarm ( ))((0 τ>= xLpPf , the probability of miss ( ))((1 τ<= xLpPmiss ) is 

minimized, or for a given missP , fP is minimized. Under the minimum-probability-of-

error rule (Bayes rule), the optimal decision is [ ] [ ])(maxarg|maxargˆ xx iiiii pPHPi == , 

where iP  is priori probability for hypothesis iH . The LRT in (2.19) is then optimal when 

τ  is equal to the ratio 10 / PP  of the priori probabilities. The probability of error in this 

case is 
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                                            xxx dpPpPPe ∫= ))(),(min( 1100 .                                        (2.20)        

The problem of choosing an optimal decision rule is treated in a broad literature [5], 

relatively small attention is paid to how to quantify the discriminating ability of data on 

the detection performance. The discriminating ability of data (or the performance of the 

detection) can be evaluated through the Chernoff distance. Chernoff distance gives an 

upper bound on both fP and missP : 

                                                 
))(),(( 10 xx pps

f
seP

µτ −−≤   ,                                            (2.21) 

                                               
))(),((1 10 xx pps

miss
seP

µτ −−≤ ,                                            (2.22) 

where sµ  is the Chernoff distance defined by: 
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and τ  is the threshold in the LRT of (2.19). When the Bayes rule is applied, 10 / PP=τ  

and (2.20) together with the fact that 10,),min( 1 ≤≤≤ − sbaba ss , give an upper bound 

on eP  

                                           
))(),((
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1

0
10 xx ppss

e
sePPP

µ−−≤ .                                              (2.24) 

The bound is very tight within a scale factor [49][73]. The Chernoff bounds (2.21), (2.22), 

and (2.24) on fP , missP , and eP  hold for any distribution of the data and any sample size 

N .  

2.3 Data Compression and Decompression  

Data compression methods are commonly developed either under a classical rate-

distortion viewpoint [1] or an operational rate-distortion viewpoint [11],[29].  The 
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classical viewpoint strives to develop methods that are optimal on average, over an 

ensemble of realizations of a random process model; this necessarily demands a random 

model for the signal and knowledge of a probability structure.  The operational viewpoint 

specifies a compression framework (whose design is often based on insights from the 

classical viewpoint) and then optimizes the operating point of that framework for the 

particular signal at hand; this has the advantage of relaxing the assumptions made on the 

signal (e.g., can assume it is deterministic) but has the disadvantage that side information 

describing the operating point must be included as overhead in the compressed bit stream.  

Because a sensor network would likely be required to operate in an abundance of 

differing signal environments, in this dissertation, we focus on the operational viewpoint 

to remove the necessity of assuming (limiting) statistical models for the signal. Typically, 

the operational framework uses numerically computable allocations of rates resources 

(see [29], [33]) rather than classical closed forms such as reverse water-filling [1].    

Moreover, we discuss compression under the umbrella of transform-based coders, 

which are ubiquitous in practice. The choice of transform coding is due to (i) it provides 

us the rigid theoretical analysis and design of optimal compression for detection and 

estimation tasks; (ii) it provides us good compression performance and low 

computational complexity [31][32] because the performance of compression is 

proportional to the time consumed and hardware complexity of compression algorithm 

and transform coding provides us the best tradeoff in the energy-rate-accuracy space, i.e., 

transform coding can achieve a given certain compression performance in a more 

efficient way than other compression schemes.   
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)(xy T= )(yq Q= )(qc C=
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~
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Figure 2.2: The elements of compression-decompression process. 
 

The structure of a transform coder is illustrated in Figure 2.2, the first step is to 

transform the original digitized sensed data [ ]TNxx ]1[,],0[ −= Kx  (x  can be a vector for 

one-dimensional signal or a matrix for two-dimensional image) into a new set of samples,      

which are more amenable to compression according to a criteria best for inference tasks 

at hand (see Chapter 3 for details). For this step, we write )(xy T= , where y  is another 

finite sequence, having the same number of elements as x . The operator T is invertible 

(not a singular matrix); For its properties will be discussed shortly. The decompressor 

employs the inverse transform, 1−T , and no distortion is introduced by this step. The 

second step is a many-to-one mapping to represent the transform samples approximately 

using a sequence of quantization indices. For this step we write )(yq Q= , where q  

denotes the finite sequence of quantization indices. The set of possible outcomes for each 

quantization index is generally much smaller than that for the transform samples; also, 

the number of such quantization indices is no larger and may be smaller than the number 

of transform samples. The decompressor uses an approximate inverse, 1~ −Q . Thus, the 

quantization mapping function, Q , introduces distortion to the data and makes the 

reconstructed x̂  not identical to x . The quantization indices are coded to form the final 
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bit-stream. We write )(qc C= . This step is invertible and introduces no distortion so that 

the decompressor may recover the quantization indices as )(1 cq −= C .  

2.3.1 Coding 

 

The purpose of coding is to exploit statistical redundancy among the quantization 

indices. The quantization and transform elements are designed in such a way as to ensure 

that the redundancy is localized.  Ideally, the underlying random variables are all 

statistically independent. In that case, the indices may be coded independently and the 

only form of statistical redundancy which need be considered is that associated with any 

non-uniformity in their probability distribution.   

2.3.2 Transforms 

The transform is responsible for mapping the original samples into a form which 

enables comparatively simple quantization and coding operations. On the one hand, the 

transform should capture the essence of statistical dependencies among the original 

samples so that the group of adjacent transform samples and the quantization indices 

possess common characteristics and exhibit at most only very local dependencies, ideally, 

independent; On the other hand, the transform should separate irrelevant information 

from relevant information according to certain criteria so that the irrelevant samples can 

be identified and quantized more heavily or even discarded whereas relevant samples are 

quantized lightly.   

We can consider an NN ×  linear transform matrix A , which maps an N-dimensional 

input vector, x , into an N -dimensional output vector, y , according to  

                                Axy = .                                                          (2.25) 

Here, we restrict our attention to invertible transforms, writing the inverse as  
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                                                       Syx =1 ,                                                         (2.26) 

where S  is the inverse of A ; i.e., ISA = , the NN ×  identity matrix. In this case, S  is 

the unique inverse of A , which we may write as  

                                                   AS =−1 , or 1−= AS .                                             (2.27) 

Observe that the transform coefficients may be expressed as  

                                                       xa qqy = ,                 1,,1,0 −= Nq K  .                (2.28) 

where qa  is the q th column of the nn× matrix, A . We refer to qa  as the thq  “analysis 

vector,” since it “analyzes” the original vector x , to determine its thq transform 

coefficient. Accordingly, we refer to A  as the analysis matrix. Also, the inverse 

transform may be expressed as  

                                                            ∑
−

=

=
1

0

1

n

q

qqy sx ,                                                 (2.29) 

where qs  is the thq  column of the nn× matrix, S . We refer to qs  as the thq  “synthesis 

vector,” since 1x  is “synthesized” from a linear combination of the qs , with the transform 

coefficients serving as the weights. Accordingly, the matrix,S , is known as the “synthesis 

matrix”.  

A transform is said to be orthonormal if the analysis vectors are all mutually 

orthogonal and have unit norm (length); i.e.,  

                                              0=j
H

i aa , ji ≠∀ ,                                               (2.30a) 

                                                1
2
== ii

H

i aaa , i∀                                              (2.30b) 

This means that IAAAA == HH , so that HAS =  is a unitary matrix. Equivalently, the 

analysis and synthesis vectors for orthonormal transforms are identical. An orthonormal 
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transform performs an orthonormal expansion of the input signal as the sum of its 

projections onto each of the basis vectors; i.e.,  

                                                ( )∑∑ ⋅==
q

qq

H

q

qqy ssxsx .                                       (2.31) 

An important property of orthonormal transforms/expansions is that they are “energy 

preserving,” meaning that  
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In words, the sum of the squares of the input samples (energy of the input), is identical to 

the sum of the squares of the transform coefficients (energy of the output). This property 

is often known as Parseval’s relation.  

To appreciate the significance of this property for compression, consider the 

compression system of Transform Coding Structure. Let yye ˆ−=y denote the error 

introduced into the transform coefficients by quantization. Similarly, let 11 x̂xe −=x  

denote the error introduced into the reconstructed samples by the entire compression 

system. By linearity of the transform, yx See = and if the transform is orthonormal, 

22

yx ee = . In words, the error energy in the samples is identical to the error energy in 

the transform coefficients. Minimizing the mean square error (MSE) of the quantized 

transform coefficients is then identical to minimizing the MSE of the reconstructed 

samples. The use of an orthonormal transform has no impact on the rate-distortion 

function and the selection of an “ideal” transform ensures that the transform bands may 

be quantized and coded independently without penalty.  
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Figure 2.3: Graphical representation of scalar quantization. 

 

2.3.3 Quantization 

Quantization is the element of lossy compression systems responsible for reducing 

the precision of data (reduce the wordlength of samples) in order to make them more 

compressible. In most lossy compression systems, quantization is the sole source of 

distortion. Next, the most widely used quantization (scalar quantization) will be reviewed.  

Scalar quantization (SQ) is the simplest of all lossy compression schemes. It can be 

described as a function that maps each element in a subset of the real line to a single 

value in that subset. Consider partitioning the real line into M disjoint intervals 

                                                  [ )1, += qqq ttI ,           1,,1,0 −= Mq K .                    (2.33) 

with  

                                                 +∞=<<<=∞− Mttt L10 . 

Within each interval, a point qx̂ is selected as the output value (or codeword) of qI . 

The process of scalar quantization is illustrated in Figure 2.3.  A scalar quantizer is 

basically a mapping from continuous ℜ  to discrete { }1,,1,0 −MK . Specifically, for a 

given x , )(xQ  is the index q  of the interval qI  which contains x . The dequantizer is 

given by  

                                                           qxqQ ˆ)(
~ 1 =−  
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when ),[ 1+=∈ qqq ttIx , that is qxxQQ ˆ))((
~ 1 =− . Clearly, the qt can be thought of as 

thresholds, or decision boundaries for the qx̂ . The size of the quantization index set is 

constant, M , therefore only M2log  bits will be needed to signal the codeword chosen 

by the quantizer, which is why a SQ that has bM 2=  boundaries is often called b-bit 

quantizer.  There are a number of scalar quantizers (such as uniform quantizer, Lloyd-

max scalar quantizer, entropy coded scalar quantization) which differ in the choice of the 

boundaries qt  and the reconstruction value qx̂ . For example, for uniform quantization [10] 

the decision boundaries are spaced evenly, except for the two outer intervals, the 

reconstruction values are also spaced evenly, with the same spacing as the decision 

boundaries: in the inner intervals, they are the midpoints of the intervals. One of the most 

used uniform quantizer is the midrise quantizer that can be represented as 

                                                        
2

)(
∆

+





∆

∆=
x

xQ ,  

Here, ∆ denotes the step size and  ⋅  denotes an operator that rounds downwards to 

the nearest integer.  Different from the uniform quantizer, the Lloyd-Max quantizer 

[10][11] sets the decision boundaries and reconstruction values to minimize MSE 

between the input samples and reconstructed values subject to the size of the code (M) 

according to the probability density function (PDF) of the samples. The entropy coded 

scalar quantizer [11] minimizes MSE subject to a constraint on the entropy of the 

quantization indices.   No matter what type of quantizer, for the high rates (M is large or 

the number of bits of quantizer is large
1
) and the data is individually independent 

                                                 
1
 The large is a loose concept, one or two bits could be called large, see [31][32] 
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distributed (IID), the distortion-rate function, or quantization noise power, can be 

modeled in the form of  

                                                  bCbd 22 2)( −≅ σ .                                               (2.34) 

where 2σ  is the variance of the samples and C  is a constant which is different for 

different quantizers [11][30], and is usually determined heuristically in most cases.   

A very desirable feature of compression schemes is the ability to successively refine 

the reconstructed data as the bit-stream is decoded. In this situation, a (perhaps crude) 

representation of the data to be compressed becomes available after decoding only a 

beginning small subset of the compressed bit-stream for one purpose. As more of the 

compressed bit-stream is decoded, the representation of data can be improved 

incrementally for another purpose. Compression systems possessing this property are 

facilitated by embedded quantization and this is the basis for the compression for 

sequential task embedded tasks introduced in Chapter 1.  

In embedded quantization, the intervals of higher rate quantizers are embedded within 

the intervals of lower rate quantizers. Equivalently, the intervals of lower rate quantizers 

are partitioned to yield the intervals of higher rate quantizers. Consider a sequence of 

K embedded scalar quantizers 0Q , 1Q , 2Q , …, 1−KQ . The intervals of 1−KQ are then 

embedded within the intervals of 2−KQ , which in turn are embedded within those of 3−KQ , 

and so on. Equivalently, the intervals of 0Q are partitioned to get the intervals of 1Q , 

which in turn are partitioned to get the intervals of 2Q , and so on.  

Specifically, each interval of 0Q ( 1,,1,0 000
−= MqIq K ) is partitioned into 1M  

intervals 
10 ,qqI  1,,1,0 10 −= Mq K . The total number of intervals of 1Q  is then 10MM .  
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Figure 2.4: Embedded scalar quantizers

0Q , 
1Q , and 

2Q , of  rates R = 1, 2, and 3 bits/samples. 

 

 

          ∆− 0 ∆∆−3 ∆3∆− 2 ∆2  
 Figure 2.5: Uniform scalar quantizer with deadzone. 

 

Similarly, the intervals of 1Q  are partitioned to obtain the intervals of 2Q  as 
210 ,, qqqI  

1,,1,0 22 −= Mq K . In general then, kQ ( 1,,1,0 −= Kk K ) has ∏
−=

k

j

jM intervals, given by 

kqqqI ,,, 10 K
. With this partitioning, it is natural to take the comma separated list 

kqqq ,,, 10 L as the “quantization index” of 
kqqqI ,,, 10 K

. This situation is illustrated in Figure 

2.4 for 3=K . A particular elegant (and important) example is the uniform dead zone 

quantizer, which is showed in Figure 2.5 

2.3.4 Bit Allocation         

The compression gain is achieved by limiting the number of bits assigned to the 

quantizers of transform coefficients. In many cases, since different parts of transform 

coefficients have different statistics and importance for the tasks at hand, each quantizer 

has to be optimized for its own transform coefficients and the quantizers are not identical. 

For example, it is well known that the statistics of high-frequency components of audio 
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are significantly different from those of the lower frequency components, therefore a 

subband coder (audio MP3 coder [74]) assigned different quantizer to different spectral 

bands of audio. The optimal bit allocation (or operational rate distortion optimization for 

a particular signal at hand instead of classical operational rate distortion optimization for 

an ensemble of realizations of a random process models) can be formulated as:  First, 

transform coefficients are grouped into M  coding units where each coding unit can be 

quantized by K  different available quantizers. For each coding unit i  quantized by a 

quantizer j, we have an average number bits per coefficient ijr  for coding unit i and the 

corresponding distortion ijd  caused by the quantizer j . We make no assumptions of any 

particular structure for the ijr  and ijd ; we simply use the convention that quantization 

indices are listed in order of increasing “coarseness”; i.e. 1=j  is the final quantizer 

(highest 1ir  and lowest 1id ) and Kj = is coarsest. We consider here that the distortion 1id  

due to 1ir is known, or it is possible to replace measured ijr  and ijd  by values that are 

estimated on models, but this would not affect the bit allocation algorithm. We then 

define an objective distortion function )(⋅f  that is a function of ijd   and optimize it under 

the constraint that the total number of bits is upper bounded by the budget TR .  

Mathematically speaking, the goal of bit allocation is to find the optimal quantizer *

ib  for 

each coding unit i such that  

                                               T

N

i
ib

Rr
i

≤∑
=1

*                                                        (2.35) 

and the specified form of distortion measure ( )**
2

*
1

,,,
21 NNbbb

dddf K   is optimized.  
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2.4 Compression for Inference Tasks        

 The last but the most important part of the compression system is for the sensor 2S  to 

use the decompressed data 1x̂ and its local data 2x to do the specific detection or 

estimation.  If we let the output of the estimation component at the sensor 2S  be ),ˆ( 21 xxh , 

then it is obvious that the error ellipse determined by the estimation error covariance 

matrix ( )( ){ }ThhE ),ˆ(),ˆ(),ˆ( 212121ˆ xxθxxθxxC
θ

−−=  will be greater than that without 

compression i.e., ( )( ){ }ThhE ),(),(),ˆ( 212121ˆ xxθxxθxxC
θ

−−≥  due to the reason that the 

compression algorithm causes certain distortion on 1x . Similarly, the resulting 

probability of detection error is ),ˆ( 21 xxeP  from the hypothesis test ),ˆ( 21 xxL , it is 

expected that ),(),ˆ( 2121 xxxx ee PP ≥ . Therefore, the ultimate goal of the compression 

algorithm is to minimize its generated distortion on 1x  such that ),ˆ( 21 xxh is as close to 

the true parameter θ  as possible, and ),ˆ( 21 xxeP  is as small as possible.  

  Although the problem of designing optimal compression algorithms for various 

applications has received considerable attention and many important results have been 

established [10], until now, most of the efforts are concentrated primarily on designing 

compression that performs well in terms of MSE criteria; in other words, the goal of most 

compression algorithms is to minimize the differences between the original data 1x  and 

the reconstructed data 1x̂ , i.e., minimize ∑
=

−=−
n

i

ixixn
1

11 ])[ˆ][(/1ˆ
11 xx . This choice of 

distortion measure is natural when the sample-to-sample reconstruction is needed. In this 

spirit, for orthonormal transform and scalar quantization, the bit allocation formulation 

(2.35) together with quantization distortion (2.34) is [11]  
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where iC  is a constant determined by the ON transform and SQ quantizer used and iη  

denotes the ratio between the number of coefficients in the coding unit i and the total 

number of coefficients, and 2

iσ  is the variance the coding unit i.  The value of iσ is 

usually estimated from the coefficients in unit i. According to [11], (2.36) can be 

extended to the more complex quantizer, such as vector quantizers. The classical 

compression methods for non audio/video signals are typically based on (2.36); even for 

audio/video, (2.36) is also the primary choice of distortion function [29]. However, when 

compression algorithms are studied as an element of an inference system, for estimation 

tasks the ultimate performance measure should be the variance of the estimation error, 

i.,e., ),ˆ( 21ˆ xxCx , and similarly, for detection tasks the ultimate performance measure 

should be the probability of detection error, i.e., ),ˆ( 21 xxeP . MSE is not only 

inappropriate since it is weakly related to xC ˆ  and eP , but is not required because 

inference accuracy, not reconstruction of signal, is the primary objective. Therefore 

appropriate, useable metrics that measure the impact of rate reduction on the inference 

performance must be found.  Besides, we assume that the inference (detection/ estimation) 

processing and compression processing are not jointly designed, i.e., the 

detection/estimation processing uses methods that are optimal in the absence of 

compression and the compression process is optimal for optimal detector or efficient 

estimators. Although joint design is preferred from an ultimate optimality perspective, we 

believe it is of limited value in the inter-operability environment of practice because 

sensor networks are more likely to be called on to provide data to other systems that are  



 33 

Our Compression Framework
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Figure 2.6 : Framework of the compression method. 

 

independently designed (e.g., “legacy” systems and other “system of systems” scenarios); 

Since there are numerous approaches to estimate a parameter or detect a signal, the 

compression algorithms must be universal.  

 The synopsis of our compression framework is summarized as follows:  We model 

the collected sensor data as a deterministic signal plus additive noise.  As illustrated in 

Figure 2.6, for simplicity and with its own importance, we seek to compress a block of 

data x  collected at sensor S1 so that it can be transmitted to S2 using no more than a 

budgeted R bits while making the decision about the presence of the signal with the 

lowest possible probability of detection error and/or making an estimate θ  at S2 (using 

the compressed data and S2-local data) with the smallest  mean-square estimation error. 
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The processing box label “T” is a linear invertible transform (preferably orthogonal) 

whose output coefficients are quantized by the set of quantizers {Qi}; each coefficient is 

evaluated to assess its importance or quality for the desired inference tasks and bits are 

allocated to the various quantizers on that basis. We use Fisher information (2.5) to assess 

the impact on estimation accuracy and use Chernoff distances (2.23) to assess the impact 

on decision accuracy.  As will be seen, different inference tasks rely on different sets of 

coefficients.  If multiple inference tasks are required, it is also crucial to find methods to 

properly determine the optimal allocation of the bits to enact the desired trade-offs.  The 

key part of all cases is finding a method that can be used to assess the coefficients’ 

quality based on Fisher information and Chernoff distances. We will explore this in detail 

in the next Chapter.  
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CHAPTER 3                 
 

Data Compression for Parameter Estimation and 

Detection 

 

3.1 Fisher-Information-Based Data Compression for Parameter 

Estimation 

 
3.1.1 Overview of Previous Work  

 

 Data compression for distributed multi-sensor estimation problems has been 

previously considered to some degree by many others [34]-[41].  To put our results in 

context we briefly review the main results of these researchers.  Generally, these results 

are cast in the form shown in Figure 3.1.  The source emits a signal s(θ ) depending on an 

unknown source parameter θ;  the ith sensor receives signal )(θiX  that is related to s(θ ) 

and encodes it as )(ˆ θiX , which is transmitted to a central processing center where the 

encoded signals are decoded and then used to make an estimate;  Figure. 3.1 shows the 

estimation of either (i) the parameter θ,  or (ii) the signal s(θ ) itself.  

These previous results can be grouped in several ways, based on what is being 

estimated, what compression framework is used, etc.  The focus is either on (i) 

optimizing compression for the purpose of estimation of the source signal [16],[17],[34], 

[35],[58] or on (ii) optimizing compression for the purpose of estimating the source 

parameter [36]-[39],[40],[41]. Many focus on restricting the encoder to being a scalar 

quantizer that is then designed according to some optimization criteria [34], [35], [36],  
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Figure 3.1: Classical set-up for compression in a distributed sensor system. 

 

[38], [39], [41], [58].  Others focus on more general compression structures 

[16],[17],[37],[40] , although, most of these ([17],[37],[40]) focus on establishing inform-

ation theoretic results and bounds.  Of these, the closest to our approach is the approach 

by Lam and Reibman [39], who used the idea of optimizing the compression with respect 

to an estimation-centric distortion function (the Cramer-Rao lower bound), but they only 

considered scalar quantization of signal samples rather than a more powerful 

compression framework like transform coding, as considered here.  The results in [41] 

take an inference-centric viewpoint, although it chooses a quite different metric driven by 

the specific application they considered; their approach seems considerably less general 

than that considered here. 

3.1.2 Fisher Information for Compression 

 

 Fisher information is a well-known concept in estimation theory [4].  It provides a 

numerical assessment of how useful a set of data is for estimating a parameter. The 

amount of Fisher information that a set of data possesses is proportional to the parameter 

estimation accuracy.  Its properties include: (i) the Fisher information is invariant under 
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application of invertible maps to the data [78] and is decreased under application of 

quantization (Appendix B), (ii) the reciprocal of the Fisher information yields the 

Cramer-Rao Lower Bound on the variance of any unbiased parameter estimator, and (iii) 

it can be viewed as an “information” measure because it is nonnegative and it is additive 

for independent observations (Appendix A). However, it is fundamentally different from 

Shannon information, which measures how many bits must be used to represent a signal.  

A Shannon-Fisher connection has been explored in [1] in a classical rate-distortion 

information-theoretic viewpoint. 

 Let the real
1
 data vector x be drawn from a probability density function (PDF)  p(x;θ) 

that is parameterized by θ, which is to be estimated.  The Fisher information (FI) of this 

estimation problem is defined to be  
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where the expected value is taken with respect to p(x;θ) and therefore the Fisher 

information is not a function of the data vector x.  However, the notational dependence 

on x shown on the left-hand side of (3.1) is included merely to keep track of the data set 

or data subset for which the Fisher information is computed.  As indicated on the left-

hand side of (3.1), the Fisher information can be a function of the parameter to be 

estimated, although in many cases it is not.   

Clearly, compression of the data vector x using a lossy algorithm changes the 

underlying PDF to that of the post-compression data x̂  available for estimation, and 

therefore alters the Fisher information. More specifically, compression x decreases the 

                                                 
1
 Modifications to handle the complex case are straightforward [4].  
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Fisher information (Appendix B). Then, our goal here is to seek operational rate-

distortion methods to maximize the amount of Fisher information remaining in the data 

set x̂ while satisfying a budget R on the rate used to represent the data set.  However, 

when the Fisher information depends on the parameter θ  to be estimated a question 

arises as to how to precisely characterize our desire to maximize the Fisher information 

without knowing at what parameter value we should be concentrating our efforts.  Thus, 

in general, we propose a minimax approach.  Let );( xθJ  and )ˆ;( xθJ  be the Fisher 

information of the original data x and the compressed data x̂ , respectively.   The minimax 

approach is to compress to R bits such that we satisfy 

                                                [ ])ˆ;();(maxmin
ˆ

xx
x

θθ
θ

JJ − ,                                        (3.2)                    

where the maximization is over all the possible parameter values and the minimization is 

over all compressed x̂  that meet the bit budget R.  Clearly, when the Fisher information 

does not depend on the parameter θ  or when the Fisher information can be represented 

by the product of two independent factor, such as )ˆ()()ˆ;( 21 xx JJJ θθ = , the minimax 

approach (3.2) is equivalent to maximizing )ˆ(xJ or )ˆ(2 xJ , which are the cases we will 

focus on. There are surely tasks for which the minimax would be needed, but we found 

no typical important estimation tasks that required it, and therefore, this general minimax 

approach is left for future work.    

 3.1.3 Compressing to Maximize Fisher Information 

 

 Let noisy measurement kx  be the set of data collected at sensor node Sk (k = 1, 2) to 

support estimation of the parameter θ.  We will model the received signal vectors kx  as 

                                              2,1,)( =+= kkkk wsx θ ,                                       (3.3)                                   
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where )(θks  is an unknown deterministic signal vector dependent on the unknown scalar 

parameter θ  to be estimated, and wk is a additive noise vector with w1 and w2 

independent of each other.   Without loss of generality, we assume that the noise vector 

w1 is white (if not, prewhitening filter [4][5] can be used before compression) and the 

variance 2
1σ  of  w1 is known from design considerations and/or sensor measurements in 

the absence of a signal; the characteristics of  w2  is not needed to be known for 

developing the compression. 

 As shown in Figure 2.1 and Figure 2.6, measurement vector 1x  will be compressed 

at S1 and sent to S2; the decompressed vector 1x̂  is then used with 2x  to estimate the 

parameter θ.   So the general goal of our compression method is as follows, expressed as 

transform coding with a Fisher-information-based distortion.  Given some orthonormal 

(ON) decomposition basis set N
nn 1}{ =φ  (e.g., wavelet transform, DFT, DCT, etc.) we can 

write the signal vector to be compressed as 
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                                      (3.4)                                 

where nχ  are the data coefficients, )(θξn  are the parameterized signal coefficients, and 

nω  are the noise coefficients.   

We wish to select which coefficients nχ  should be quantized and transmitted to 

achieve a desired rate-Fisher information goal.  Only those coefficients with significant 

contribution to the Fisher information should be selected.  The quantization should be 

done such that only minimal degradation in Fisher information occurs.  Let 
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},,2,1{ NK⊂Ω  be the set of indices of a selected set of coefficients; let }|{ Ω∈= nbB n  be 

a set of bit allocations to the selected coefficients; let }|ˆ{ Ω∈nnχ  be the selected 

coefficients after quantization using the allocation set }|{ Ω∈= nbB n . The resulting 

compressed signal is then given by  

                                                ∑
Ω∈

=
n

nnφx χ̂ˆ1 .                                                     (3.5)                                 

Our goal, then, is to find a selection set Ω  and a bit allocation }|{ Ω∈= nbB n  that solves 
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xx .                                  (3.6)                                           

Note that the maximization in (3.6) is of the Fisher information of the combination of the 

two data sets; however, only one of those data sets is available at S1, where compression 

processing is done.  However, because the two data sets are statistically independent (due 

to the assumed independence of the noise vectors), the result in Appendix A shows that 

)()ˆ(),ˆ( 2121 xxxx JJJ +=  which means that we can replace (3.6) with  

                                         RbJ
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,

x .                                   (3.7)                                            

(Note that if both sensor signals are to be compressed and transmitted to a fusion center, 

then the 2
nd
 sensor also would (independently) compress its data to maximize its own 

)ˆ( 2xJ ; we focus here only on compression of a single sensor’s data - the later case will 

be considered in Section 3.1.4.) 

We proceed with our development by expressing the Fisher information )( 1xJ  in 

terms of the ON decomposition coefficients.  Using (3.4), we can recast our signal model 

in terms of the transform coefficients as  
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1x 1χ 1χ̂

)( 1xJ )()( 11 xχ JJ = )()ˆ( 11 xχ JJ ≤

 

Figure 3.2: Compression processing, the data vectors, and their corresponding Fisher information. 

 

        ,)( 111 ωξχ += θ                                                      (3.8)                                      

where 1χ  is the N×1 vector of the coefficients 
nχ  in (3.4), )(1 θξ  is the N×1 vector of the 

signal coefficients )(θξn  in (3.4), and 1ω  is the N×1 vector of the noise coefficients nω  

in (3.4).  As outlined above, Fisher information is invariant under any invertible maps 

and an ON transform is indeed an example of an invertible transform, which gives   

                                                     )()( 11 xχ JJ = ,                                                     (3.9) 

which means that the ON expansion conserves Fisher information; thus, only selection 

and quantization processing affects the Fisher information, as shown in Figure 3.2.   

To develop the compression processing we need to quantify the impact of the 

selection/quantization processing on the Fisher information. Selection processing is easily 

modeled because the Fisher information of any discarded coefficient nχ  is zero. The 

hard part is modeling the effect of quantization of coefficients on the decrease of Fisher 

information.  

 In our transform coding framework, the quantizer will be applied to each 

coefficient nχ  such as  

                                          ( ) ( )nnbnbn nn
r ωθξχ +== )(QQ ,                               (3.10) 
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where )(Q ⋅
nb

 denotes nbM 2=  level scalar quantization on nχ . As showed in Figure 2.3, 

any bn-bit scalar quantization can be described as a mapping from ℜ  to some discrete 

values { }110 ,,, −Mqqq K . More specifically, consider partitioning a real line into 

bM 2= disjoint intervals 

                                                     [ )1, += jjj ttI ,           1,,1,0 −= Mj K .                  

with  

                                                +∞=<<<=∞− − MM tttt 110 L .                     

Within each interval, a point jq  is selected as the output value of jI . Due to quantization 

(multiple-to-one mapping), nr  takes the discrete form and can only take one value 

from{ }110 ,,, −Mqqq K , and therefore, the PMF of nr  can be expressed as  
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where )( np χ is probability density function (PDF) of nχ . Since nr  are independent 

discrete values, the Fisher information of nr  can be changed from (3.1) to  
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If we know the probability density function (PDF) of nω , and denote it as )(xp
nω

, the 

closed form of ),(
~

θnr bJ
n

can be analytically calculated as  
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 (3.13) 

where { }
111 ,,,..., −+ Mjj tttt  are thresholds of the chosen quantizer and we have defined 

θθξξ ∂∂=Γ /)()( nn , which captures the signal’s sensitivity to a change in the parameter 

and put the factors due to quantization and noise inside bracket of (3.13); 

∫ ∞−
=

x

dttpx
nn

)()( ωϖη  is the cumulative distribution function for PDF of  nω .  The 

derivation of (3.13) is given in Appendix B. The total Fisher information possessed by 

quantized ON transform coefficients 
1χ̂  is   

                                              ∑=
n

nbJJ
n

),(
~~

1ˆ
θχχ .                                              (3.14) 

   Technically, to implement (3.13), one must derive the form of )( nξΓ  for the desired 

estimation task as a function of the signal coefficients nξ . However, in the operational 

rate-distortion setting we must instead evaluate the results using the noisy coefficients 

nχ . In such case, we have to use nχ  to replace nξ in (3.13). 

   Given the type of quantizer ( }{ jt  are set), we can surely maximize (3.14) under the 

bit constraint (3.6), however, there is an issue preventing direct optimization of (3.14) 

from being applied: the computation complexity of (3.13) is severe when 
nb  is large. 

Especially, when the size of data N is large, the operations needed to calculate (3.13) will 
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be formidable and reduce the leverage of compression to achieve energy-time efficiency 

for wireless sensor network. We have to find ways to keep the computation of the Fisher 

information of quantized data as small as possible. In this dissertation, we propose to use 

an approximate noise model to complement (3.13) to solve this problem.  

The idea behind the approximate model is to model the quantization noise as an 

additive noise to the measurement; mathematically speaking, after selection/quantization 

the signal model becomes   

                                            εωξχ ++= 111
~)(

~
ˆ θ ,                                             (3.15) 

where a tilde indicates a “reduced-by-selection” version of a vector and ε  is the noise 

vector due to quantization of the selected coefficients. Without loss of generality, we 

assume that 1
~ω   is the additive, white Gaussian noise, and uniform quantizer is used such 

that ε  is modeled as white, uniformly distributed, zero mean, and independent of the 

sensor-noise vector 1
~ω , where the independence assumption is reasonable because of the 

dithering effect of the sensor noise [61],[62].  Because of the independence, the variance 

of the sum of these two noises is the sum of their two variances.   

There is a difficulty here because the PDF of 1χ̂  is now not strictly Gaussian, which 

makes exact evaluation of the Fisher information difficult.  Therefore, we choose here to 

use an approximation that still yields good results: as long as the variance of the 

uniformly distributed quantization noise ε is small, the sum of the two noises in (3.15) is 

approximately distributed Gaussian.  To see this we note that the PDF of the total noise 

εων += 1
~  is the convolution of the individual PDFs, therefore the Fourier transform of 

this convolution is  
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)()()(
1

~ fPfPfP εων = ,                                                 (3.16)                                                  

where )( fPν  is the Fourier transform of the PDF of ν , etc.  Because 1
~ω  has a Gaussian 

PDF, )(
1

~ fPω  is also a Gaussian function, but with the reciprocal variance; the larger you 

make the variance of 1
~ω  the narrower you make )(

1
~ fPω .   Because ε  is uniformly 

distributed, its PDF is a rectangular function so )( fPε  is a sinc function.  If the variance 

of ε  is small enough so that the sinc function )( fPε  is broad enough to be 

approximately flat over the region where )(
1

~ fPω  is significant, then the product will have 

approximately the shape of a Gaussian and its inverse Fourier transform (the PDF of the 

summed noises) will also be approximately Gaussian.  See Appendix B for more details 

of this approximation along with numerical simulation results and comparison between 

this approximation model and the exact model from (3.13). Through the simulations, we 

can see that the fitness of approximation to the exact result depends on the number of bits 

of quantization and the variance 2σ  of 1
~ω . In terms of Gaussian noise and uniform 

quantization, the goodness of approximate model is shown in the Table B.1. For different 

quantizers, we can have an empirical function called )(σγ , which defines a threshold 

above which the approximation model perfectly matches the exact model. Thus, 

whenever the approximation model is used, we can rewrite (3.13) as 

νξχ += )(
~

ˆ 11 θ ,                                                     (3.17) 

where ν  is zero-mean Gaussian with variance equal to the sum of the variances of ωωωω1 and 

ε .  Since the quantizers won’t all have the same number of bits allocated, the variance of 

ε changes from element to element; let 2
nq be the variance of the n

th
 element of ε . 



 46 

Applying the Gaussian noise assumption to the signal model in (3.3), without 

compression, the Fisher information of the n
th
 coefficient quantized with respect to 

unknown parameter θ  is [4]                                          
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If the approximation is used, i.e., when the bits allocated for )(θξn is greater than )(σγ , 

instead of (3.13), the Fisher information of the n
th
 coefficient quantized to bn bits can be 

numerically computed by  
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Note that the form of (3.19) has a more understandable interpretation than (3.13): we are 

compressing to maintain a high level of what we will call the “signal-sensitivity-to-noise-

ratio” (SSNR).  Our goal then is to maximize (3.19) subject to the constraint in (3.6).    

        Similarly, because we must compute )ˆ( 1χJ  from our data coefficients nχ , we have 

to instead use a noisy version given by 
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where the hat is used to indicate that the quantity uses the noisy quantities that are 

available from the data rather than the noise-free values really needed.  If we let )ˆ(ˆ ntJ χ  

represents the distortion computation of (3.13), the operational distortion function we use 

to assess the n
th
 coefficient quantized to bn bits is 
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and we seek a bit allocation set },,2,1|0{ NnbB n K∈≥=  that solves  
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 Lagrangian and dynamic programming optimization methods are commonly used to 

determine the bit allocation in operational rate-distortion methods [29]. Lagrangian 

method is much more effective than dynamic programming, especially when the 

objective function is a sum of objective functions, and (3.22) is just this case. Although 

the expensive dynamic programming is said to be superior to Lagrangian method because 

it contains the exhaustive search, as far as the simulations in this dissertation are 

concerned, we found out that the differences brought by these two different methods are 

slight. Therefore, Lagrangian methods are preferred to use for sensor applications. To 

apply (3.21) we need to have a numerical way to determine the value of Jn as a function 

of the allocated bn.  Establishing the exact form of quantization noises is generally not 

possible and it is common to use an approximate model (2.34).  We use small blocks of 

coefficients to estimate the variance needed in (2.34) and then apply the same quantizer 

to all coefficients in a block for computational efficiency.  

There is also the issue of the choice of the ON transform.  An advantage of our 

approach is that once the designer has derived the functional form of the signal sensitivity 

function )(⋅Γ , it generally provides insight into the proper choice of a suitable transform.  

For example, as will be seen in Section 3.1.4, when the parameter to be estimated is the 
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relative delay between two sensors’ signals, the Fisher information depends on a specific 

bandwidth measure, thus choosing a frequency domain transform makes sense in that 

case. 

3.1.4. Example Applications 

 We are particularly interested in problems where data must be shared between sensors 

because neither sensor can estimate the parameter by itself.  We call these types of 

problems “dual-sensor-critical” problems.  Such problems often arise in passive systems 

due to lack of knowledge about a transmitted signal that has been perturbed by some 

parameter.   

It is important to keep in mind that the real essence of FI is that it captures the 

sensitivity of the data to a change in the parameter; this is due to the derivative in the 

definition of FI in (3.1).  Thus, in a passive sensor setting the data at one sensor may be 

very sensitive to the parameter (i.e., the FI is non-zero) yet you may still be unable to 

estimate the value of the parameter.  But with two sets of data (each having a different 

parameter value) you can estimate the difference in the two parameter values.  For 

example, the data can be sensitive to a change in time delay but without a reference it is 

impossible to estimate the delay.  What makes an active sensor problem different is that 

you have a known reference signal: estimation of the parameter’s change from the 

reference signal leads to estimation of the actual value.  In a passive sensor scenario you 

often need the data at the other sensor to play the role of the reference. 

Thus, to make our approach work we only need that the data is sensitive to the 

parameter, and that is what Fisher information assesses.   
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Figure 3.3 : The spectrum of  a typical FM signal used in the simulations. 

 

There are many estimation tasks that are likely to arise in a sensor network and we 

can’t explore them all here.  Our goal here is to choose examples that are common 

distributed estimation problems and (i) illustrate the overall effectiveness of our 

estimation-centric method relative to MSE-driven methods, and (ii) illustrate how the 

form of the Fisher information can drive the choice of the transform. We show the 

application of our method to four cases: (i) time-difference-of-arrival (TDOA) [66], (ii) 

frequency-difference-of-arrival (FDOA) [66], (iii) direction-of-arrival (DOA) [66], and 

(iv) signal reconstruction from compressed data.  Maximum likelihood estimate is used 

for each estimate [67][68][70].  

The signal we use in our simulations is a complex baseband FM signal with a pseudo-

random modulating signal that mimics the spectrum of speech.  A realization of the 

signal spectrum is shown in Figure 3.3. 

Compression-estimation processing is simulated as follows: (i) generate a signal at 

sensor S1, (ii) create the signal at sensor S2 by imparting a TDOA or FDOA or DOA to 

the S1 signal, add computer-generated white Gaussian noise to each signal to yield signals 
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with signal-to-noise ratios of SNR1 and SNR2, compress the noisy S1 signal, estimate the 

TDOA or FDOA or DOA or reconstructed signal using maximum likelihood estimators.  

Under each test condition of interest (i.e., SNR values and compression ratio) we 

evaluated the RMS error of the estimates by averaging over 400 Monte Carlo runs.  In 

each case we compare the performance of our method to that of standard minimum-MSE 

transform-based compression (using the same transform as used on our method).  We 

compare the performance on the basis of RMS error of the parameter estimates: 

( )∑
=

−=
M

m

m
M

1

2ˆ1
 Error RMSEstimation θθ  

where θ  is the true parameter value, mθ̂  is the estimate made on the m
th
  of M Monte 

Carlo runs.  We also compare the MSE performance on the basis of the average vector 

norm of the signal error between the data vector ( 1x ) and the decompressed version of the 

data vector ( 1x̂ ):  
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1

ˆ
1

Norm Error Signal Average xx . 

The MSE distortion function is based on (2.36). We should also state that we perform no 

post-quantization entropy coding (i.e. lossless compression), application of which would 

likely provide further improvement in the compression ratio with no further degradation 

in the parameter accuracy or signal MSE; we do this to clearly focus on what is possible 

using only the FI-based compression. 

3.1.4.1 Compression for TDOA Estimation 

 It is possible to locate a signal source by first estimating the TDOA between several 

pairs of sensors and then using the TDOA estimates to estimate the source location [66].   
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 The continuous-time signal model for two passively-received complex baseband 

signals having an unknown TDOA of τ  is given by 
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where t0 is also an unknown parameter that can not be estimated, and wi(t) is complex 

bandlimited white Gaussian noise.  In the frequency domain this model becomes 
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where )( fS  is the Fourier transform of the source signal.  It is well known (see, e.g., 

[67],[68]) that for TDOA estimation, the Cramer-Rao bound is inversely proportional to 

the so-called RMS bandwidth Brms of the signal , which is defined by 
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.                                              (3.26) 

Because the Fisher information is the reciprocal of the Cramer-Rao bound, the Fisher 

information for TDOA estimation is directly proportional to Brms. This analysis of the 

Fisher information for TDOA estimation explicitly drives the choice of a frequency-

domain transform to provide the ability to discard frequency components that contribute 

little to the Fisher information.  Thus we will use the DFT as our transform in our 

compression processing.                    

         Now assume that we have samples of the signals in (3.25) such that the samples of 

the bandlimited white noises give discrete-time white noises with variances 2
iσ , with 

only 2
1σ assumed known.  We also assume that the sampling of the underlying signal 
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))2/(( 0 τ+− tts  is such that aliasing is made negligible.  Taking the DFT X1[k] of these 

samples (taking care to minimize leakage errors) leads to the frequency domain model   

][)]2/(
2

exp[][][ 101 kWtk
N

jkSkX ++−≈ τ
π

 

                                                       12/,,12/,2/ −+−−= NNNk K ,             (3.27) 

where the S[k] are the DFT coefficients (for negative and positive frequencies) of the 

samples of signal s(t) and W1[k] are the DFT coefficients of the noise.   

This is clearly a dual-sensor-critical problem.  Each data set is sensitive to changes in 

the time-of-arrival 2/0 τ+t  but neither sensor by itself can estimate 2/0 τ+t , 0t  alone, 

or τ  alone.  In fact, even using both data sets it is impossible to estimate the nuisance 

parameter 0t .  Although this appears to be a two-parameter problem that might require a 

2-D FI matrix, there really is only one thing that matters: sensitivity of the first sensor’s 

data to 2/0 τθ +=∆ t . Of course that is equivalent to sensitivity to τ  for a fixed 0t .  Thus, 

we only need to consider the FI with respect toτ . 

Note that because the DFT is an orthogonal, but not orthonormal, transform we have 

to account for the impact of this on the noise variance; thus, W1[k] is a complex Gaussian 

random variable with variance 2
1σN .  Using (3.20), the FI of k

th
 quantized DFT 

coefficient applying the approximation model becomes 

                   ( ) 12/,,12/,2/,
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a K
σ

π

. (3.28)                         

The numerator of (3.28) shows that the DFT coefficients get quadratically weighted 

based on their frequency’s distance from DC.    For the condition where the 
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approximation model fails, we have to turn to the true model. However, because the 

signal is complex, the scalar quantizer has to be applied to the real and image part of 

][1 kX  respectively. Let  

( )( )][Q][ 1 kXkR M ℜ=  

and 

( )( )][Q][
~

1 kXkR M ℑ=  

where )(⋅ℜ  and )(⋅ℑ denotes the real parts and imaginary parts of the quantity between 

the parenthesis, respectively. Since ][kr and ][~ kr are independent, the total Fisher 

information of DFT coefficient ][1 kX  is   

                                           ])[
~
(ˆ])[(ˆ])[(ˆ 1 kRJkRJkXJ ttt += .                           (3.29)     

Applying (3.13), we have                                 
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where ( )⋅Φ  is the cumulative distribution function for a standard normal PDF and is 

defined as  

( ) ∫ ∞−
−=

x

dttx )
2

1
exp(

2

1
Φ 2

π
,                                 

and }{ jt are thresholds that are decided by the chosen scalar quantizer, and range of 

both ( )][1 kXℜ  and ( )][1 kXℑ . 

Using (3.28) to (3.31) in (3.21) with the Lagrange optimization method produces the 

results shown in Figure 3.4 to Figure 3.9, which show the performance of our 

compression method for a few scenarios.  Figure 3.4 and Figure 3.5 show (for 

compression ratios (CR) of 4:1 and 8:1, respectively) the TDOA accuracy performance of 

our method (labeled “Fisher”) vs. the performance of standard MSE-optimum DFT-based 

transform compression (labeled “MSE”) as the SNR1 at sensor S1 is varied; the value of 

SNR2 at sensor S2 is fixed at 40 dB.  The legend on the plot indicates the cases where just 

the signal at S1 is compressed (labeled “S1”) and the cases where the signals at S1 and S2 

were both compressed (labeled “S1&S2” and with dashed curves on the plots for easier 

identification).  For comparison, the performance with no compression is given (labeled 

“w/o comp”).  The effect of varying SNR2 is shown in  Figure 3.6 and Figure 3.7 (for CRs 

of 4:1 and 8:1, respectively), where results are shown for the case of both SNR’s 

changing but set equal to each other. Figure 3.8 and Figure 3.9 show, for further insight, 

the performance of our method and the standard MSE-optimal DFT-based transform 

compression relative to the reconstruction error for compression ratios of 4:1 and 8:1, 

respectively; the vertical axis shows the norm of the error vector between the original 
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(noisy) signal and its compressed version, which assesses the MSE performance of the 

two methods.    

In all cases shown, our method provides better TDOA accuracy than the MSE-

optimized method; at moderately high SNR our method is nearly the same as when no 

compression is used – even when the CR is 8:1.  In some cases the TDOA accuracy of 

the MSE-based method is quite poor (especially at higher CRs and when both signals are 

compressed) – indicating that optimizing MSE provides no guarantee of good 

performance relative to parameter estimation accuracy. Also note that when both sensor’s 

signals have been compressed at 8:1, our method’s performance is degraded a small 

amount where as the performance of the MSE-based method is severely degraded. 

However, notice in Figure 3.8 and Figure 3.9 that the TDOA-optimized compression 

performs very poorly from the reconstruction point of view – this shows that compression 

for reconstruction and compression for TDOA accuracy are in conflict with each other; 

our method favors TDOA accuracy at the expense of MSE while the reference method 

favors MSE at the expense of TDOA accuracy.  

 The above algorithm can be also extended to apply to image recognition applications. 

The task in image recognition is finding a specific match in an image. However this 

image may be distorted and compressed from the original. The Fisher-information-based 

algorithms that aim to maximize the ability of images to recognize are detailed in 

Appendix C.  

3.1.4.2  Compression for FDOA Estimation 

It is possible to locate a signal source by first estimating the FDOA between several 

pairs of sensors and then using the FDOA estimates to estimate the source location [66].   
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Figure 3.4: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 4:1; the SNR of the 

sensor S2 signal was 40 dB. 
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Figure 3.5: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 8:1; the SNR of the 

sensor S2 signal was 40 dB. 
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Figure 3.6: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 4:1; the SNR of the 

sensor S2 signal was set equal to SNR1. 
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Figure 3.7: TDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 8:1; the SNR of the 

sensor S2 signal was set equal to SNR1. 
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Figure 3.8: Reconstruction accuracy vs SNR of pre-compressed sensor 1S  signal for a compression ratio of 

4:1. 
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Figure 3.9: Reconstruction accuracy vs SNR of pre-compressed sensor 1S  signal for a compression ratio of 

8:1. 
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It is well known (see, e.g.,[67],[68]) that for FDOA estimation, the Cramer-Rao bound is 

inversely proportional to the so-called RMS duration Drms of the signal , which is defined 

by 

∫

∫
∞

∞−

∞

∞−=
dtts

dttst
Drms

2

22

)(

)(

.                                                (3.32) 

Because the Fisher information is the reciprocal of the Cramer-Rao bound, the Fisher 

information for FDOA estimation is directly proportional to Drms. This analysis of the 

Fisher information for FDOA estimation explicitly drives the choice of the identity 

transform (which is an ON transform) to provide the ability to discard time components 

that contribute little to the Fisher information.  Thus we will directly quantize the 

complex-valued signal samples, using individual quantizers for the real and imaginary 

parts. 

Given this insight, we now derive the form for the signal sensitivity function )(⋅Γ  in 

terms of the samples of the received signal.  The signal model for two passively-received 

signals having an unknown FDOA of v  is given by 
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 ,         (3.33) 

where v0 is an unknown nuisance parameter that can not be estimated, and wi[n] is 

complex Gaussian noise with variance of 2
iσ , with 2

1σ  assumed known. The discussion in 

Appendix D addresses why symmetric indexing is chosen in (3.33). The model in (3.33) 

is mathematically identical to the TDOA model for the DFT transform in (3.27) and 

therefore we can use the previous results to immediately state that the FI of quantized 

per-sample in terms of approximation model becomes 
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On the other hand, in terms of calculation of ( )][ˆ
1 nxJ t by applying (3.13), we let 

( )( )][Q][ 1 nxnr M ℜ=  and ( )( )][Q][~ 1 nxnr M ℑ= , due to the reason that ][nr and ][~ nr are 

independent, the total Fisher information of quantized samples ][ˆ1 nx  is   

                                           ])[~(ˆ])[(ˆ])[ˆ(ˆ 1 nrJnrJnxJ ttt += .                                 (3.35)     

where 

( )
( )

( )

( ) ( )

( ) ( )

( )

( )



















 ℜ−
−





















 ℜ−
−

+








 ℜ−
−







 ℜ−



































 ℜ−
−−





















 ℜ−
−

+



















 ℜ−





















 ℜ−
−

ℑ
=

−

−

−

= +

+

∑

1

11

2

1

11

2

1

1

1

1

11

2
2

1

1

2

1

11

1

11

2

1

11

2

1

2

1

2

][
2Φ1

][
2exp

][
2Φ

][
2Φ

][
exp

][
exp

][
2Φ

][
2exp

4

])[(
])[(ˆ

σ

σ

σσ

σσ

σ

σ

πσ

nxt

nxt

nxtnxt

nxtnxt

nxt

nxt

nxn
nrJ

M

M

M

j jj

jj

      (3.36)  

( )
( )

( )

( ) ( )

( ) ( )

( )

( )



















 ℑ−
−





















 ℑ−
−

+








 ℑ−
−







 ℑ−



































 ℑ−
−−





















 ℑ−
−

+



















 ℑ−





















 ℑ−
−

ℜ
=

−

−

−

= +

+

∑

1

11

2

1

11

2

1

1

1

1

11

2
2

1

1

2

1

11

1

11

2

1

11

2

1

2

1

2

][
2Φ1

][
2exp

][
2Φ

][
2Φ

]][
exp

][
exp

][
2Φ

][
2exp

4

])[(
])[~(ˆ

σ

σ

σσ

σσ

σ

σ

πσ

nxt

nxt

nxtnxt

nxtnxt

nxt

nxt

nxn
nrJ

M

M

M

j jj

jj

        (3.37) 

where the definitions of )Φ(⋅  and }{ jt are same as in (3.30) and (3.31). 

         Using these results (3.34)-(3.37) in (3.21) with the Lagrange optimization method 

produces the results shown in Figure 3.10 and Figure 3.11, which show the performance 

of our method (labeled “Fisher”) and  the standard MSE-optimum time-domain  
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Figure 3.10: FDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 4:1; the SNR of the 

sensor S2 signal was 40 dB. 
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Figure 3.11: FDOA accuracy vs SNR of pre-compressed sensor S1 signal for a CR of 8:1; the SNR of the 

sensor S2 signal was 40 dB. 
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compression (labeled “MSE”) relative to the FDOA RMS error value for compression 

ratios of 4:1 and 8:1 as SNR1 at sensor 1S  is varied; the value of SNR2 at sensor 2S is 

fixed at 40 dB, respectively; We have included the case where just the signal at 1S  is 

compressed (labeled “S1”) as well as the case where the signals at 1S  and 2S were both 

compressed (labeled “S1&S2”); these figures also show the FDOA RMS error that is 

achieved when no compression is used (labeled “w/o compression”).   In all cases shown 

in Figure 3.10 and Figure 3.11, our method provides better FDOA accuracy than the 

MSE-optimized method. 

3.1.4.3  Compression for DOA estimation 

       Direction of arrival (DOA) estimation is a classical problem that has been 

extensively studied from numerous aspects. A wide variety of techniques have been 

proposed for the DOA estimation of narrowband sources in the far-field [4],[70], [71]. 

Let us consider an array of M  uniformly spaced omni-directional sensors arranged in a 

uniform linear array (ULA). Let d  denote the spacing between two consecutive sensors. 

Let λ  denote the signal’s wavelength, and let )9090( 00 <<− ϕϕ  denote DOA of a 

narrowband signal that is illuminating the array.  

The DOA is measured clockwise with respect to the normal to the line of sensors, 

then the matrix of observations (snapshots) is given by 

                                Nittst iii ,,2,1),()()()( K=+= wαx ϕ ,                                (3.38)                                   

where received signal vector [ ]TiMii txtxt )(,),()( 1 L=x and receive noise vector 

[ ]TiMii twtwt )(,),()( 1 L=w  and the steering vector is given by  

[ ]TwMjjw ss ee
)1(

,,,1)(
−−−= Lϕα                                          (3.39) 
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where the spatial frequency sw  is given by  

                                                        
λ

ϕπ
π

sin2
2

d
fw ss == .  

        Let us look at a two-sensor array ( 1S and 2S ) to be consistent with the context in this 

Chapter. Despite being of interest in itself, the two-sensor array case also gives us a 

glimpse at the effects quantization has on multi-sensor array. Let the snapshot at the two 

sensor ( 1S and 2S ) be 
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     After we stack all the received samples ][1 mx into a vector )(1 swx and then we perform 

any ON transform on )(1 swx  to get )(1 swχ whose elements are ][1 mχ .  

                       1,,1,0][)]2/(exp[][][ 1011 −=+−−= Nmmwwjmm s Kωξχ                (3.41) 

It should be noted that the best ON transform is the phase-invariant transform, otherwise, 

(3.40) does not hold.  The Fisher information with respect to the unknown parameter sw  

according to (3.18) is computed by                                
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Observing (3.43), it is clear to see that the Fisher information of DOA ϕ  can be 

decomposed into the product of two independent terms, one is a function of DOA ϕ  and 

distance between the sensors d  and the signal’s wavelength λ  and the other completely 

depends on the data )(1 mξ  and variance of noise 2

1σ . Clearly this problem can be 

handled by applying our “maximize Fisher information” approach only to the part of the 

Fisher information that is within the square brackets in (3.43).  

       Proceeding as before, in terms of the partial Fisher information we intend to 

maximize, according to (3.20), 
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Using these results (3.44)-(3.46) in (3.21) with the Lagrange optimization method 

produces the results shown in Figure 3.12 and Figure 3.13, which show the performance 

of our method (labeled “Fisher”) and  the standard MSE-optimum time-domain 

compression (labeled “MSE”) relative to the DOA RMS error value for compression 

ratios of 4:1 and 8:1 as SNR1 at sensor 1S  is equal to SNR2 at sensor 2S  and is varied from 

10 dB to 40 dB; The wavelet ON transform (Coif5 wavelet, see [72] ) is used. Regarding 

the parameter in (3,42), we choose the distance between the two sensors are equal to the 

wavelength, λ=d , and the true DOA 0=ϕ  which corresponds to the direction that has 

the better worse than other angles (See our discussion on the minimax problem).  In all 

cases shown in Figure 3.12 and Figure 3.13, our method provides better DOA accuracy 

than the MSE-optimized method. The main reason why MSE is inferior to maximizing 

SNR is in that MSE pays equal weight to all the coefficients, even the coefficients of 

small amplitude are severely corrupted by the noise whereas maximizing SNR give more 

bits to those coefficients whose magnitude is much higher than the noise lever. In this 

case, maximizing SNR has partial denoising functionality.  

3.1.4.4  Compression for Signal Estimation 

As a further illustrative (though perhaps not entirely practical) example of the 

flexibility of our Fisher-information-driven viewpoint we consider the scenario  
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where the goal is to compress the data x1[n] at sensor S1 and send it to sensor S2 where it 

would be used together with the S2-local data x2[n] to estimate the underlying signal s[n].   

For simplicity here we assume that the relative delay n0 is known either from previous  
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Figure 3.12: DOA accuracy vs SNR1 pf pre-compressed sensor 1S  signal for a CR of 4:1; the SNR of the 

sensor 2S signal was equal to SNR2 . 
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Figure 3.13: DOA accuracy vs SNR1 pf pre-compressed sensor 1S  signal for a CR of 8:1; the SNR of the 

sensor 2S signal was equal to SNR2. 
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estimation processing or from some other a priori knowledge (and this is where we veer 

from a practical example into an illustrative one).   

We can estimate the DFT of s[n] instead of estimating s[n] directly, so after taking the 

DFT of x1[n] and x2[n], we have  

1,,1,0][][][

1,,1,0][]2exp[][][

22

101

−=+=

−=+−=

NmmWmSmX

NmmWmnjmSmX

K

Kπ
                          (3.48)       

From this we see that X1[m] and X1[m] satisfy the complex classical linear model [4] so 

(3.48) is equivalent to  
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Applying results for the Fisher information for the classical linear model from [4] to 

(3.48) and (3.49) gives   
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From this, let us assume fine quantization on 1X , that is when the approximation model is 

valid, we see that after quantization the per-coefficient Fisher information to use in (3.20) 

for optimizing the compression of sensor S1’s data becomes 
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However, maximizing this is equivalent to minimizing MSE.  Thus, this is an illustration  

that our method is flexible enough to cover the two cases mentioned in Section 3.1.1: 

parameter estimation and signal estimation.  Also, it shows that when MSE is appropriate 

our method inherently uses it.   

      In practice, sensor networks may also be tasked with multiple estimation tasks from 

multiple users, this would make it a multiple parameter problem where the compression 

requirements are in conflict with each other. This is discussed in Chapter 4. 

3.2 Chernoff-Distance-Based Data Compression for Detection 

3.2.1 Overview of Previous Work 

 

 Using the same set-up as in Section 3.1, we can formulate target detection based on 

compressed data 1x̂ from 1S and local data 2x at 2S  as a statistical hypothesis testing 

problem: 

τ

0

1

),ˆ(

),ˆ(
),ˆ(

210

211
21

H

H

p

p
L

<

>
=

xx

xx
xx ,                                         (3.53) 

 where ),ˆ( 210 xxp   and ),ˆ( 210 xxp   are joint PDF of 1x̂  and 2x , and the threshold τ  in 

the LRT (3.53) can be chosen to minimize the probability of error eP  or the probability of 

miss ( missP ). Unfortunately, both eP  and missP  are notoriously intractable functions of the 

N-variate distributions 0p and 1p [73], and in general, can only be evaluated 

experimentally. Hence, it is not feasible to optimize the parameters of complex systems 

such as lossy coders with respect to eP  or missP . Some alternative performance measure 
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must be used instead to provide the tractable metric to quantify the degradation of 

compression on detection accuracy.  

In comparison with the few discussions of compression for estimation in literature, 

various optimality criteria have been analyzed for the problem of optimal quantization for 

hypothesis testing. Most focus on restricting the encoder to being a scalar quantizer. The 

composite hypotheses 0=θ versus 0>θ was considered in [42] and the efficacy of the 

sufficient statistic was used as the objective function. Asymptotically optimal 

companding functions for scalar quantizers were then derived. In [38] [43], a generalized 

“f-divergence”, of the which the Kuallback-leibler distance is a special case, was used as 

an optimality criterion and its asymptotic quantization effects are studied. A deflection 

criterion similar to signal-to-noise ratio (SNR) under one of two simple hypotheses is 

considered in [44], where it is found that maximization of this deflection criterion is by 

quantizing the likelihood ratio rather then the observation itself. Some properties of these 

so-called likelihood ratio quantizers are further explored in [45], and their optimality with 

respect to statistical divergence are also investigated. A method of combining vector 

quantization and classification was developed in [46][47] by defining an objective 

function that incorporates MSE and Bayes risk. [48] uses Ali-Silvey distances as 

optimality criteria and investigate non-asymptotic quantizer effects. The use of alpha 

entropy as an optimality criterion was proposed in [49] because it gives the exponential 

decay to zero of the total probability of error of a binary hypothesis test with equal priors, 

according to a theorem of Chernoff. The distributed hypothesis testing problem with 

quantized observations is directly addressed in [50]. Optimal scalar quantizers are derived 

with the Bhattacharyya distance as the objective function and an iterative design 
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algorithm is developed.  The Chernoff distance and Kullback-Leibler distance are used to 

set the information-theoretic bounds on target recognition performance based on 

degraded image data [51] [52].   

  The success of designing compression for estimation based on Fisher information 

motivates us to investigate performance measures that provide tight bounds on eP  and 

missP . Since the ability to distinguish between two statistical hypotheses depends on the 

respective data distributions, using measures of distance or dissimilarity between two 

distributions sounds natural and is promising.  

Ali and Silvey studied a generic category of distances that measure the dissimilarity 

between two distribution [48]. The Ali-Silvey class of distances is based on an axiomatic 

definition and takes the general form: 

                                               ( ) { }))((01,0 LCEfppd = ,                                             (3.54) 

where f is any increasing function, C is any convex function on ),0[ ∞ , 01 / ppL = is the 

likelihood ratio for the data, and 0E is the expectation under hypothesis 0H . It is 

convenient to also allow pairs ),( Cf , where f is decreasing and C is concave.  

       The Ali-Silvey class of distances is decreased under application of many-to-one 

maps such as quantization. For our problem at hand, it means  

                                               ( ) ( ))(),(),ˆ(),ˆ( 1010 xxxx ppdppd ≤ ,                                  (3.55) 

where x̂ and x are some 1×N  compressed data vector and unquantized data vector.    

       Although it has been showed in [43] and [48] how Ali-Silvey distance can be used 

for optimal quantizer design in detection problems, they limited their design to scalar 

quantizers. Besides the decrease of distance under quantization, the other attractive 
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property of the Ali-Silvey distance is that they are invariant under application of 

invertible maps to the data, which directly makes the powerful transform-based 

compression coding possible.  

 Chernoff distance (2.23) is in the Ali-Silvey class. More specifically,  
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where )ln()( ⋅−=⋅f is convex increasing and 10,)( <<⋅= sC s   is concave. Chernoff 

distance is the key factor for the Chernoff upper bound of probability of error eP .  [51] 

provides several bounds derived from Ali-Silvey distance, including Chernoff bound and 

uses these bounds to guide the design of a quantizer. It is natural to suspect the design 

that reduces only an upper bound criterion may not always reduce the probability of error. 

However, Chernoff bound is different from other bounds in that Chernoff’s theorem [57] 

clearly exhibits the exponential tightness of the Chernoff bound given that the samples 

that make up x  are I.I.D. Exponential tightness means that for large N .  

                                    )])((exp[)])((exp[ εµεµ +−<<−− sNPsN e ,                          (3.57) 

where )(sµ is the Chernoff distance for each sample. Clearly any design which 

increase )(sµ  must (eventually for large N ) reduce the probability of error.  

Clearly, compression of the data vector x using a lossy algorithm changes the 

underlying PDF to that of the post-compression data x̂  available for detection, and 

therefore decreases the magnitude of the Chernoff distance.  Similarly, our goal here is to 

seek operational rate-distortion methods to maximize the magnitude of the Chernoff 
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distance represented by the data set x̂ while satisfying a budget R on the rate used to 

represent the data set. 

 Let )(xsµ  and )ˆ(xsµ be the Chernoff distance of the original data x and the 

compressed data x̂ , respectively.   The optimal approach is to compress to R bits such 

that we satisfy 

                                               [ ])ˆ()(min
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ss µµ − ,                                              (3.58)                               

where the minimization is over all compressed x̂  that meet the bit budget R. This is 

equivalent to maximizing the post-compression )ˆ(xsµ .   

 3.2.2 Compressing to Maximize Chernoff Distance 

 

Let noisy measurement xk collected at sensor node Sk (k = 1, 2) be modeled as 
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where s  is an unknown deterministic signal vector and wk is a noise vector with w1 and 

w2 independent of each other.   Measurement vector x1 will be compressed at S1 and sent 

to S2; the decompressed vector 1x̂  is then used with x2 to decide the presence of s . By 

independence (See Appendix A), )()ˆ(),ˆ( 2121 xxxx sss µµµ += , so we need only maximize 

)ˆ( 1xsµ . 

Similar to the goals in Section 3.1, but expressed here with the Chernoff distance, the 

general goal of our transform-coding compression method is as follows: we use an 

orthonormal (ON) basis N
nn 1}{ =φ  with nχ  as the coefficients for x1, and ON expansion 

conserves Chernoff distance, hence )()( 1xsns µχµ =  . Only those nχ with significant 
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contribution to the Chernoff distance should be selected and quantized. Let 

},,2,1{ NK⊂Ω  be the set of indices of a selected set of coefficients; let }|{ Ω∈= nbB n  be 

a set of bit allocations to the selected coefficients; let }|ˆ{ Ω∈nnχ  be the selected 

coefficients after quantization using the allocation set }|{ Ω∈= nbB n .  The resulting 

compressed signal is then given by  
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nnφx χ̂ˆ1 .                                                                   

Our goal, then, is to find a selection set Ω  and a bit allocation }|{ Ω∈= nbB n  that solves 
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        Let ( )nbnr χQ=  and the PMF of  nr  under different hypotheses iH , 1,0=i  can be 

calculated as 
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The total Chernoff distance of the independent discrete quantized coefficient nr  can be 

computed by 
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See appendix B, the close form of Chernoff distances with respect to each nr is       
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where nξ  is the ON transform of noise-free signal ][ns  and )(⋅η  is the cumulative 

distribution function for PDF of  ON transformed noise vector 1w  . 

  If we do not insist on the optimum selection of the Chernoff parameter s , we may 

obtain another distance, called the Bhattacharyya distance which also gives us the upper 

bound  

                                     )]([ln)( 2/1

02/1 xx LE−==µ .                                              (3.64) 

We prefer using the Bhattacharyya distance rather than the Chernoff because the 

Bhattacharyya distance is a popular, simple measure of similarity between two 

distributions or convenient measure of class separability, if the number of classes is two. 

Furthermore, it gives an upper bound of the Bayes error [2] if the distributions are normal. 

Other divergence measures in the literature are not as closely related to Bayes errors as is 

the Bhattacharyya bound. However, all discussions about the Bhattacharya distance in 

this dissertation could be extended to the Chernoff. 

If the noise 1w  at 1S  is zero-mean, white Gaussian noise, Bhattacharyya distance 

takes a simple form like 
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After ON transformation, and applying the approximation model that we used in Section 

3.1 jointly, the post-compression Bhattacharyya distance becomes 
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It is obvious that maximizing (3.66) in terms of compression is equivalent to maximizing 

the Signal-to-Noise-and-Quantization ratio. This suits for the compression under the 
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assumption that the signal is deterministic. The goal for compression for detection will be 

to keep the signal level above the noise and quantization noise floor as far as possible. 

Notice that (3.66) is only for Gaussian noise, the expression for Bhattacharyya distance 

under other distribution of noise will be different from (3.66). 

        If we use the noisy quantities nχ  rather than the noise-free values nξ , the 

operational Bhattacharyya-distance-based distortion function we use to assess the n
th
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and we seek a bit allocation set },,2,1|0{ NnbB n K∈≥=  that solves  
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     Simulation results are skipped because maximizing signal SNR for detection is well 

known and a metric very similar to (3.66) has been applied before in [51][52], although 

they do not provide the rigid operational function (3.67) as we do. The real interest here 

is to complete the inference-centric compression framework and explore how multiple 

measures (for multiple inferences) drive the specification of new multiresolutional 

characteristic of the data needed to support multiple sequential and simultaneous 

inferences.    
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CHAPTER 4 

                 

Data Compression for Simultaneous Tasks of Multiple 
Inference Quantities 

 

 

      In Chapter 3, we have considered data compression for single estimation/detection 

tasks. However, as pointed out elsewhere [27], sensor networks may also be tasked with 

multiple inference tasks from multiple users. For example, sensor 2S  may use the shared 

compressed data stream from sensor 1S  to simultaneously accomplish joint TDOA and 

FDOA measurements. However, compression for TDOA (3.27)-(3.30) and compression 

for FDOA (3.33)-(3.36) conflict such that compression for TDOA favors the frequency-

domain coefficients of high frequencies whereas compression for FDOA favors the time-

domain coefficients of early or late times. For such simultaneous estimation tasks, it is 

crucial to find the right way to balance the conflicts of compression for different 

parameters. On the other hand, sensor 1S  may send data for sensor 2S , where detection is 

first performed to check if both sensors have the signals intercepted from the same 

emitter, and then once detected, joint TDOA/FDOA will be performed to locate the 

emitter. So we also need to find ways to balance the conflicting compression 

requirements between detection and estimation. To solve this problem, in this Chapter, 

we will derive multiple distortion measures to assess the information utility of data 

subsets for the multiples inferences and develop the corresponding numerical 

optimization methods to achieve desired trade-offs based on the information utility.       
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4.1 Data Compression for Simultaneous Multiple Parameter 

Estimation without Detection 

 

 Different from single parameter estimation, now we have a parameter vector 

],,[ 1 pθθ K=θ  sought to be estimated, intuitively, we will say that the compression 

algorithm 1ε  is distinct from the compression 2ε  if at least one of the estimated value jθ  

by 1ε  is distinct from the corresponding variable by 2ε .  To design the optimal 

compression, we need to have criteria for comparing compression algorithms. As 

suggested in Chapter 2, the natural and ultimate choice of criteria to compare different 

algorithm relies on their error covariance matrix which is lower bounded by and can be 

quantified by the Cramer-Rao Lower Bound matrix (2.7).  Therefore, we can claim that 

compression algorithm 1ε is considered as preferable to compression algorithm 

2ε ( 21 εε > ) if the difference of ),(CRB),(CRB 12 εε xx −  is a positive matrix. However, it 

is not obvious how to use the matrix ),(CRB kεx  as a distortion measure because 

compression algorithms often require a scalar measure for efficiency.  The open question 

for us is how we map ),(CRB kεx  into a scalar measure of information utility which 

exploits the information content that is carried by ),(CRB kεx  and is proportional to the 

“size” of the high probability uncertainty region of the estimate ofθ as well.  

The determinant ( )),(CRBdet kεx  is proportional to the volume of the rectangular 

region enclosing the core ellipsoid of covariance ellipsoid of any estimate. Hence, the 

first information utility function we choose is ( )),(CRBdet kεx . Although the volume of 

the high probability regions seems to be a useful measure, there are cases in which this 

measure underestimates the residual uncertainty. In case the smallest principal axis 
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shrinks to zero, the volume of the uncertainty ellipsoid is zero, while the uncertainties 

along the remaining principal axes might remain large. An alternative measure that 

avoids this shortcoming of ( )),(CRBdet kεx  would be ( )),(CRBtr kεx , which is 

proportional to the circumference of the rectangular region enclosing the covariance 

ellipsoid. Therefore, the distortion measure for multiple parameter estimation must be 

able to minimize ( )),(CRBdet kεx  and ( )),(CRBtr kεx  under the bit constraints.  

  However, we found that deriving closed-form distortion measures based on either 

( )),(CRBdet kεx  or ( )),(CRBtr kεx  is difficult - even for a single parameter case, such as 

TDOA-only case [24],[60]. Therefore, with the desire to design the most efficient 

compression algorithms, we resort again to Fisher information.   

 In Chapter 3, we have used Fisher information to derive transform-coding schemes 

for the signal parameter cases where the Fisher information (FI) is a scalar. However, 

when multiple parameter parameters are to be estimated the FI becomes the Fisher 

information matrix (FIM). The Cramer-Rao bound (2.7) states that the error covariance 

Σ  of any unbiased estimator of x satisfies  

                                          ),(CRB),(1 kk εε xxJ =≥Σ − .                                         (4.1) 

It can be shown that the Fisher information matrix (FIM) is related to the surface area of 

a high probability region, which is a notion of the “size” of the region [1]. It is natural to 

assume that maximizing the size of the FIM is equivalent to minimization of the size of 

the CRB. Similar to the measures for CRB, possible forms of the information utility 

function using the FIM are ( )),(det kεxJ  and ( )),(tr kεxJ .  
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          Besides easier manipulation of J rather then CRB,  ( )),(det kεxJ  and  

( )),(CRBdet kεx  or ( )),(tr kεxJ   and ( )),(CRBtr kεx  can be verified as equivalent to each 

other due to the close relationships between J and CRB in (4.1). First of all, it is easy to 

show from matrix theory that minimizing ( )),(CRBdet kεx  is equivalent to 

maximizing ( )),(det kεxJ . Second, the following relationship between ),(CRB kεx and 

),(1 kεxJ
− provides the justification that the maximization of ( )),(tr kεxJ  is equivalent to 

the minimization of ( )),(CRBtr kεx .  

       Because J is positive definite, 1CRB −= J  is positive definite, too. Let the 

eigenvalues of  J  be  λi >0 (i=1,…,n), then  ∑
=

=
n

i

i

1

tr λ(J)   and  ∑
=

− =
n

i

i

1

1 /1tr λ)(J .  Using 

the Cauchy-Schwarz inequality gives 
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,                (4.2) 

That is, )/tr(tr 21 J)(J n≥− . Thus the maximization of (J)tr  tends to bring the minimization 

of )(J 1tr − , providing further justification for the choice of the trace.  Hence, in the sequel, 

we will use ( )),(det kεxJ  or ( )),(tr kεxJ  instead of ( )),(CRBdet kεx  or ( )),(CRBtr kεx  to 

derive the theory and algorithm for compression for simultaneous parameter estimation.  

Suppose we have two sensor nodes that intercept a common signal and wish to share 

data to estimate a parameter vector θθθθ.  At sensor node Sk we model the received signal 

vector xk as 

                                            2,1,)( =+= kkkk wθsx ,                                     (4.3)                                                                 
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where )(θsk  is an unknown deterministic vector dependent on the unknown 

deterministic parameter vector θθθθ, and wk is an additive noise vector with w1 and w2 

independent. To simplify the discussion, but without loss of generality, we will assume 

w1 is a zero-mean, Gaussian noise vector whose covariance matrix Σ  is known or 

estimated. The extension to other noise distributions is obvious because the following 

procedure for Gaussian noise is quite general (see Chapter 3, the comprehensive study of 

other noise distribution will be left for further work). Second, we will focus on the two 

parameter case.  Here we use an orthonormal (ON) transform for the linear invertible 

transform T in Figure 2.6.  The unitary matrix of this transform will be denoted as Φ  

with columns N
nn 1}{ =φ  that form an ON basis.  Expanding data vector 1x  with respect to 

this ON basis gives the coefficients
N
nn 1}{ =χ .  The coefficients nχ  are then quantized 

using a set of bit allocations },,2,1|{ NnbB n K== .  The compressed signal is ∑= n nnφx χ̂ˆ1 ; 

grouping these coefficients into vector form gives 

                                            
νθξ

εωθξΦxχ

+=

++==

)(

)(ˆ

1

1111

,                                            (4.4)                    

where vector )()( 11 θΦsθξ =  holds the selected signal coefficients )(θξn , vector 1ω  holds 

the corresponding noise coefficients nω , and ε  is the quantization noise vector that is 

independent with 1ω . We let Q denote the covariance matrix of ε . 

  As in Chapter 3, we assume that the sensor noises are independent and therefore the 

total FIM is the sum of the FIMs at the two sensors; thus, we only need to consider the 

effect of compression on the FIM of the data at sensor 1S .  The FIM for θ  based on the 

data from sensor 1S  is the 22 ×  matrix J with elements given by [4]  
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                                              { }GΣGJ 1Re2 −= H
,                                                    (4.5) 

where 








∂
∂

∂
∂

=
2

1

1

1

θθ
ss

G  is an N×2 matrix of the signal’s sensitivities to the parameters.   The 

FIM is invariant under transformation of the data by a unitary matrix; thus, we have that  

                                                { }GΣGJ
~~

Re2 1−= H
.                                               (4.6) 

where ΦGG =
~

. The FIM specifies an information ellipse via κ=− θJθ 1T  – the larger this 

ellipse the better – with semi-axes along the FIM’s eigenvectors and whose lengths are 

proportional to the square roots of the eigenvalues.  Lossy compression of the data vector 

x changes all the elements of the FIM, making the data inferior for estimation of θ  and 

thus shrinking and rotating the information ellipse represented by the FIM.  Under the 

model in (4.4) we have that the FIM after compression is given by 

                                                 [ ]{ }GQΣGJ
~~

Re2ˆ 1−+= H
,                                            (4.7)                                                 

where the ^ symbol indicates “after compression”.  

A. Determinant of Fisher Information matrix 

 

 The area of the FIM ellipsoid can be represented as 21λλACA = , where CA is a 

constant and λi is the i
th 

 eigenvalue of the FIM.  It is clear from this point that 

maximizing the area is equivalent to maximizing det(J) = λ1λ2. It is also recognized that 

maximizing det(J) is also equivalent to maximizing the entropy of estimation uncertainty 

when the noise is Gaussian [79],[80] and coincides with other optimal criteria discussed 

in [78].   

The determinant of the FIM has been used as an objective function to be optimized in 

the solution of engineering problems (see e.g., [76], [77], [78]).  However, it is well 
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known that additive distortion yields simpler operational rate-distortion optimization 

schemes [29] whereas the determinant provides a multiplicative distortion function 

( 2

122211)det( JJJ −=J ) rather than an additive one, which make it hard to formulate a 

simple numerical distortion measure to guide compression.  However, under the fine 

quantization condition, we can develop an additive distortion measure aimed at allowing 

compression that maximizes the determinant.   

For convenience of discussion consider that the noise is an i.i.d. process with variance 

σ2
, i.e., IΣ 2σ=  (a prewhitening filter can be used if the noise is colored), and that the 

signal data is real valued. After the compression algorithm, the Fisher information matrix 

of compressed data becomes
1
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K ,                        (4.8)                                              

and its determinant can be manipulated into the form 
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         (4.9)           

Therefore, maximizing ( )Ĵdet  is equivalent to
{ }

( )RI −
−

detMaximize
110 ,, Nqqq L

.  Performing an 

eigenvector decomposition on R gives 

                                                 
1
 For the ease of deduction, we use the approximation model )/(1 22

iq+σ to quantify the effect of 

quantization on the reduction of FI. But this does not impair the correctness of (4.8). Referring to  

Appendix B, the true effect of quantization ),),((Ι σθξ ∆nt
is always less than that without compression 

)(σI , )/(1 22

iq+σ  can be used to represent this reduction of the quantity )/(1 2σ . 
2

iq  is not necessarily 

equal to (2.36) any more in this case. Later, we will use this unified approach in our discussion 
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( ) { }( ) { }( )

{ },rmsproduct te of sum)tr(1

,,,diagdet,,,diagdetdet 1111

+−=

−=−=−

R

IQQQQRI NN
TT λλλλλλ KK

   (4.10)                      

where “product terms” refers to terms that consist of products of combinations of the 

eigenvalues iλ . 

Proposition: Under the fine quantization condition, maximizing ( )Ĵdet  is equivalent to 

minimizing of tr(R).   

Proof: First, if fine quantizers are used ( 2

iq is very small), the reduction of the 

determinant of FIM will be small, which makes ( ) 1det →− RI , and all iλ  are very small. 

Thus the product terms in (4.10) are small compared to tr(R).  In this point of view, 

maximizing ( )RI −×22det  is equivalent to minimizing tr(R) . � 

         This proposition motivates using minimization of tr(R) as an approximating 

alternative to maximization of ( )Ĵdet  even though this strictly holds only in the fine 

quantization case.  We can further simplify )tr(R as follows: 
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where vi is the i
th
  element of the vector v given by ( ) 






=

− TT GGGGv
~~~~

diag
1

, which is called 

effective independence distribution (EID) in [76] and [77]. Thus, a compression 

algorithm for approximately maximizing the determinant of the FIM can be formulated as  
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which is an additive distortion measure that can be optimized effectively using the 

numerical Lagrange multiplier method of [33]. 

B. Weighted Trace of Fisher Information matrix 

 Although it involves the effect of the compression on all the elements of Ĵ , 

maximizing ( )Ĵdet  does not allow the possibility of setting an importance-weighting on 

the accuracy of the two parameter estimates because it is dependent on the product of the 

length of semi-axis, 21λλ  and there are cases where 1λ is very large while 2λ  is very 

small. Sometimes, one may wish to favor the accuracy of one parameter at the expense of 

the others. This allows user-imposed trade-offs between parameters, which is important 

in multiple parameter estimation problems in that a user may need better accuracy on a 

subset of the parameters than the rest.  Using the determinant, of course, can not fulfill 

this need, which makes the perimeter approach attractive. The perimeter of the ellipse is 

an alternative to the area, but it is quite complicated to compute exactly; however, we can 

use an approximation given by 21 λλ +≈ PCP , where CP is a constant; because the 

perimeter involves a sum of the eigenvalues it is clear that maximizing the perimeter is 

equivalent to maximizing 2211
ˆˆ}ˆtr{ JJ +=J .  Note that this may seem troubling because it 

only depends on the diagonal elements of J and does not capture the effect of the 

compression on the cross-terms (which control the tilt of the ellipse).  However, it does 

allow importance-weighting on the accuracy of the two parameters: we can use as our 

distortion measure a weighted trace ( ) 2211 1}wtr{ JJ αα −+=J , where α  is an importance-
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controlling parameter satisfying 10 ≤≤α .  Unlike the determinant, this has the very nice 

property of being an additive distortion function.  However, an issue of concern is the 

effect that compression can have on the tilt of the ellipse, which is of most concern when 

the FIM ellipse is highly eccentric.  The following theorem shows that this is not a 

serious issue because the post-compression FIM ellipse will always reside inside the 

original FIM ellipse; thus, for a highly eccentric original ellipse, compression is not able 

to greatly change the orientation of the ellipse. Thus, our goal is to seek an operational 

rate-distortion method that allocates bits within the above defined transform-coding 

framework to minimize the reduction in ( ) 2211 1}wtr{ JJ αα −+=J  with 0 ≤ α ≤ 1 while 

satisfying a budget on the total number of allocated bits. 

Theorem:  For the transform coding framework outlined above, the post-compression 

FIM Ĵ given in (4.7) has an information ellipse κ=− θJθ 1ˆT   that lies inside the original 

FIM ellipse κ=− θJθ 1T . 

Proof:  First we prove that for any positive definite, complex-valued N×N matrix 

IR jAAA += there is a relationship between the ellipsoid of A in C
N
 and the 

corresponding ellipsoid of matrix AR  in R
N
.  Let ir jxxx +=  be a vector in the complex 

space.  By using R
T
R AA =    and  I

T
I AA −=  and simple manipulation we see that   =AxxH  

( )iI

T

irI

T

rrI

T

iiR

T

irR

T

r j xAxxAxxAxxAxxAx ++++ 2 ; but rI

T

rrI

T

r xAxxAx −= , 

so 0=rI
T
r xAx  and a similar argument gives 0=iI

T
i xAx .  Thus 

rI
T
iiR

T
irR

T
r

H
xAxxAxxAxAxx 2++= , 

which describes the ellipse in the complex space.  However, if we “slice” this ellipse 

through the planes where the imaginary parts are zero (i.e., restrict it to only the real 
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axes) we get the ellipse defined in R
N
 by the real part of matrix A.  This states that all we 

need to prove is that the C
N
 information ellipse for GQΣGJ

~
)(

~ˆ 1−+= H
c  is inside the C

N
 

information ellipse for GΣGJ
~~ 1−= H

c , where the subscript “c” indicates the related 

complex version of the FIM. 

Let V be the matrix that simultaneously diagonalizes the positive-definite matrices Σ  

and Q , that is: ΛΣVVH =  and IQVVH = , where { }Nλλλ ,,,diag 11 K=Λ  are the generalized 

eigenvalues of Σ  and Q .  Then  

                         GVVGJ
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])
1

1
,,

1
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,

1

1
([diag
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H
c λλλ +++
= L .                         (4.13)                                  

and  

                                      GVVGJ
~

])
1

,,
1

,
1

([diag
~

21

H

N

H
c λλλ

L= .                            (4.14)                    

Clearly, the diagonal matrices in (4.13) and (4.14) defines ellipses that are aligned with 

the axes in a new coordinate system, and cĴ  and cJ  are just these coordinate-aligned 

ellipses rotated and scaled into a new coordinate system.  Thus, if the ellipse from the 

diagonal matrix in (4.13) is inside the ellipse from the diagonal matrix in (4.14) the proof 

is complete.  This is true if 0≥iλ ,  and, as we show next, the generalized eigenvalue 

problem QxΣx λ=  has positive eigenvalues when both ΣΣΣΣ and Q are positive definite (I 

call this the “2-pd” generalized eigenvalue problem).   

Because Q is positive definite it can be written as 
HLLQ =  where L is nonsingular.  

Then the generalized eigenvalue problem can be written as xLLΣx Hλ= .  Now inserting 

( ) HH LLI
1−

= between ΣΣΣΣ and x leads to yyKΣK λ=H
, where we have defined xLy H=  
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and 
1−= LK .  Thus, this shows that the 2-pd generalized eigenvalue problem is 

equivalent to a standard eigenvalue problem of the matrix 
H

KΣK .  Now, note that this 

matrix is positive definite, so its eigenvalues (which are also the generalized eigenvalues) 

are positive.  Noting that Σ  and Q  are positive definite completes the proof. � 

Thus our proposed approach is to compress the data collected at sensor #1 so as to 

maintain the largest weighted trace of the data-computed FIM while meeting the 

constraint on the rate; that is, 

                     
( )[ ] RbJJ

N

n

i
B

≤−+ ∑
=1

122111 subject to)ˆ(1)ˆ(max χχ αα ,           (4.15) 

where )ˆ( 1χiiJ  is the ii
th
 element of the data-computed FIM and the maximization is done 

over all allocation sets B that satisfy the rate constraint. 

4.1.1 Application to Simultaneous Estimation 

 

 To provide a clear focus on the issues as well as to ensure maximal relevance of the 

results, joint TDOA/DOA and TDOA/FDOA applications are chosen to make our point; 

More discussion is put on TDOA/FDOA application because the ideas and procedures 

developed for TDOA/FDOA is quite general and are applicable to a broad range of 

scenarios of interest to the designer of sensor network, including joint TDOA/DOA 

application.  

4.1.1.1 Joint TDOA and DOA Estimation:  

 Equations (3.28)-(3.31) and (3.44)-(3.46) provide the formulas for computing the FI 

for the TDOA only and DOA only and show the TDOA Fisher information depends on 

the quadratically-frequency-weighted DFT coefficients while the DOA Fisher 
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information depends on the SNR of the signal. Thanks to Parsaval theorem, maximizing 

SNR can be done in any ON transform, which gives us the flexibility to use DFT instead 

of wavelet transform for DOA estimate and to perform compression for joint TDOA and 

DOA using TDOA-optimal ON transform. DFT transform coding for DOA requires more 

bits be allocated to the DFT coefficients whose magnitudes are much higher than the 

noise floor.  In the following, after we first extend the necessary signal model in Chapter  

3 for the joint TDOA/DOA case, we use the theory and algorithms in Section 4.1 to 

achieve the desired trade-offs between TDOA/DOA estimates.   

 The continuous-time signal model for two passively-received complex baseband 

signals at sensors S1 and S2 having an unknown TDOA of τ  and phase shift sw due to 

DOA θ  is given by 
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where )(ns is the discrete complex-baseband signal, t0 and w0 are unknown nuisance 

parameters that can not be estimated, and wi(t) is complex-baseband bandlimited white 

Gaussian noise with variance of 2
iσ , with 2

1σ assumed known.  Note that bearing θ  must 

be estimated indirectly through the phase shift sw  by 
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
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of 1x , we have 
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                 (4.17) 

where the S[k] are the DFT coefficients (for negative and positive frequencies) of the 

samples of signal s(t) and W1[k] are the DFT coefficients of the noise.   
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       Each element of the 22×  FIM for τ and sw  are  
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Hence the pre-quantization FIM can be written as 
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Distortion measures of FIM of J  with respect to the quantization can be either one of the 

following:  

(1) Optimize )trace(J   

  Mathematically, we have 

       ∑∑
−

−=

−

−= +







+
+








=
12/

2/
22

2

1

212/

2/
22

2

1

2
][

2

1

cos2

][
2)ˆtr(

N

Nk k

N

Nk k qN

kX

dqN

kX

N

k

σθπ
λ

σ
π

J  .        (4.22)     

Letting ( )2cos4/ θπλγ d= , (4.22) can be transformed to  
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From (4.23), we can see that the value of γ  varies as the different true values of θ  and 

the choice of λ  and d , and the value of γ  determines the relative importance of the two 

summed terms for )ˆtr(J . If we have a priori information of γ̂  or we can 
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estimate γ̂ roughly, then (4.23) can be transformed into the weighted-trace-based 

distortion measure as 
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 (2) Optimizing )det(J  

      Factoring out the unknown bearing parameter θ  from (4.21), we have  
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Maximizing )det(J  is equivalent to maximizing  
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The property )det()det()det( BAAB = is used to get (4.26) from (4.25). We can maximize 

(4.26) according to (4.9) with vector G in (4.5)-(4.9) as 
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4.1.1.2 Simulations for Joint TDOA and DOA Estimation 

 The signal we use is a complex baseband FM signal with a pseudo-random 

modulating signal; a sample spectrum is shown in Figure 4.1. We assume the same SNR 

at 1S and 2S ; Both are set at 15 dB.  For compression ratio (CR) values of interest, we  
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Figure 4.1: The spectrum of a typical FM signal used in the simulations. 

 

evaluated the estimation errors of TDOA and DOA over 400 Monte Carlo runs. As usual, 

to focus on the capabilities of the transform coding and to compare compression 

algorithms under different designs, we performed no entropy coding, which would likely 

provide further improvement in the CR with no further accuracy degradation.  

Simulation results are shown in Figure 4.2 and Figure 4.3. In Figure 4.2 we see the 

inherent tradeoff that is controlled by the choice of α , whose value controls whether the 

algorithm favors TDOA accuracy, DOA accuracy, or both. It is clear that optimization of 

the determinant of FIM can balance both TDOA accuracy and DOA accuracy and tend to 

approach around the operating point nearest to no compression case.  Figure 4.3 

illustrates how changing the compression ratio affects the TDOA and DOA accuracy 

under several scenarios. The advantages of using our distortion measures rather than a 

MSE measure are made clear from these figures. 

4.1.1.3  Joint TDOA and FDOA Estimation  

 The continuous-time signal model for two passively-received complex baseband 

signals at sensors S1 and S2 having an unknown TDOA of τ  and FDOA of v  is given by 
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Figure 4.2 (a) 
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Figure 4.2 (b) 

 
Figure 4.2: Trade-off between TDOA and DOA accuracies as α is varied for SNR1 = 15 dB & SNR2 = 15 

dB and compression ratio (a) 3.5:1 and (b) 6:1.  
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Figure 4.3 (a) 
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Figure 4.3 (b) 

 

Figure 4.3 Effect of compression ratio on (a) TDOA and (b) DOA performance. 
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The TDOA Fisher information measure is 
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where S1[m] is the DFT of the signal at sensor S1 and the FDOA Fisher information 

measure is  
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where s1[n] is the signal data at sensor S1.   

 Equations (4.28) and (4.29) provide the formulas for computing the FI for the TDOA 

only and FDOA only. Similar to joint TDOA/DOA estimation, compression requirements 

for TDOA and FDOA are also conflicting because the TDOA Fisher information depends 

on the DFT coefficients (with the DFT frequencies running over both negative and 

positive frequencies) while the FDOA Fisher information depends on the signal samples 

themselves. However, unlike the joint TDOA/DOA estimation where the compression 

can be performed using the TDOA-only ON transform, the optimal ON transform for 

TDOA is the DFT whereas optimal transform for FDOA is the identity matrix. Each DFT 

coefficient is the combined result of all the time samples (from the beginning to the end), 

similarly, one time sample is the combined result of all the DFT coefficients (from the 

negative frequency to positive frequency). Even worse, the off-diagonal terms of the FIM 

depend on both frequency-domain characteristics and time-domain characteristics. It is 

difficult to calculate and optimize the post-compression values of all the components of 
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the FIM jointly unless we transform the data x1[n] into a time-frequency representation 

where frequency resolution and time resolution are jointly provided. Wavelet packet 

transform is such choice because it provides not only the time-frequency resolution that is 

needed for our joint TODA/FDOA, but also provides the energy compactness which is 

important for the compression efficiency.   

Given an orthonormal wavelet packet basis set { }nψ  with coefficients { }nc  for the 

data vector x1, we wish to select a subset Ω of coefficient indices and an allocation of bits  

}|{ Ω∈= ibB i  to those selected coefficients such that the selected/quantized signal  

∑
Ω∈

=
i

iicψ
~~

1x , where }|~{ Ω∈ici are the quantized version of the selected coefficients.  The 

selection/quantization is to be done so as to maximize the post-compression values of 

( ) 2211 1}wtr{ JJ αα −+=J   and  }det{J   while meeting a constraint on the total number of 

bits.  

 In principle, it is possible to write a mathematical equation for the coefficients and 

then consider the derivatives with respect to parameters, as needed for the FIM. This, 

however, quickly becomes intractable. Thus, we resort to exploiting the relationships 

among the wavelet coefficients and DFT coefficients and original time-domain samples 

of x1. Although it is impossible to relate each coefficient to a single DFT coefficient or 

single time-domain samples, as shown in [81], [82], and [83], all wavelet coefficients in 

the same band have the tendency to be associated only with a certain frequency range and 

a block of adjacent wavelet coefficient in the same band have a tendency to correspond to 

the same time range. Therefore, we can divide the wavelet coefficient into small blocks, 

and give each block a frequency weight and time weight according to the time-frequency 
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location characteristic of wavelets. Besides providing us the reasonable time-frequency 

resolution for compression for joint TDOA/FDOA estimation, operations on blocks of 

coefficients, instead of coding coefficients individually, brings us computational 

efficiency as well. Now consider that the wavelet packet coefficients ci are grouped into 

M blocks, where each block contains coefficients at the same frequency and over a short 

contiguous temporal range. The diagonal element of the FIM can be computed (up to a 

multiplicative factor) as:  
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where j is the block index,  fj  and  tj  are the frequency and central time, respectively, of 

the j
th
 block.   Based on (4.30) and (4.31), the distortion measure for joint TDOA/FDOA 

estimate can be determined in the following: 

Weighted Trace Optimization: 

The weighted-trace-based TDOA/FDOA distortion measure is then 
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      Bits are allocated to the coefficients using the method of [33] to maximize (4.32) for a 

given rate constraint. To compare the proposed scheme with a traditional scheme, we also 
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allocated bits to the wavelet packet blocks to minimize MSE (2.36) under the bit 

constraint.   

Although the developed scheme is applicable to all varieties of signals, we use a 

linear FM radar signal [87] to illustrate the method. A 3-level wavelet packet transform is 

performed and 8 subbands are produced; each subband is partitioned into 8 blocks.  

Moreover, to focus attention on the lossy compression performance, no entropy coding is 

applied after quantization. 

Simulation results are shown in Figure 4.4 and Figure 4.5.   In Figure 4.4 we see the 

inherent trade-off that is controlled by the choice of α, whose value controls whether the 

algorithm favors TDOA accuracy, FDOA accuracy, or balances them to achieve the 

closest operation to the no compression case.  Figure 4.5 illustrates how changing the 

compression ratio affects the TDOA and FDOA accuracy under several scenarios: the 

results labeled “Goal Attained” illustrate the performance when the impact on TDOA and 

FDOA is balanced.  In these figures the advantage of using our distortion measures is 

made clear. 

Determinant Optimization: 

 Unlike the weighted trace, the other approach, maximizing the determinant, does not 

provide us the flexibility to weight the relative importance between TDOA and FDOA 

However, it takes into account the off-diagonal elements of J that the weighted trace 

ignores and has the advantage of maximizing the size of the FIM ellipse. It is possible for 

determinant optimization to automatically achieve the best tradeoff between TDOA 

accuracy and FDOA accuracy without heuristically deciding the weight α  in the 

weighted trace approach. Correspondingly, the vector G needed to be used in (4.5)-(4.9)  
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Figure 4.4:  Trade-off between TDOA and FDOA accuracies as α is varied for compression ratio 3:1 and 

SNR1 = 15 dB & SNR2 = 15 dB; symbol  denotes the operational point (α=0.5) closest to that without 
compression. 

 

                     

                                                         Figure 4.5 (a) 
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                                                              Figure 4.5 (b)  
Figure 4.5: Effect of compression ratio on (a) TDOA and (b) FDOA performance.  A comparison is also 

made to the case of simply sending less data (“Length Reduced”) rather than compressing the data. 

 

 

 

 

Figure 4.6:  Comparison between the determinant optimization method (‘Area’) and weighted trace method 

(‘Premeter’) and MSE for compression ratio 3:1 and SNR1 = 15 dB & SNR2 = 15 dB;   
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can be determined by 
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where ][ic j  denote the wavelet coefficients residing in the jth block.  

Simulation results are shown in Figure 4.6, where the weighted trace method is also 

given for comparison; as expected, the operating point obtained from the determinant 

method is the point to achieve the pareto optimal point (the closest operation to the no 

compression case).                         

4.1.2 Modified Distortion Measures to Include Off-Diagonals 

 For the TDOA/FDOA-based location problem the estimation of TDOA/FDOA is only 

a preliminary task; the real task is estimation of the geo-location of the emitter and that, 

as is shown below, depends on the off-diagonals of the TDOA/FDOA FIM.  For 

simplicity we consider only 2-D geolocation. 

The 2-D location estimate of the emitter T
ee yx ]ˆ,ˆ[ˆ =x  is sought and K pairs of sensors 

are used.  Each pair of sensors is able to measure both TDOA and FDOA so that we have 

the measurements  
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where 
i

wτ  and 
iv

w are the random TDOA and FDOA measurement errors at the i
th
 pair of 

sensors, respectively. Any two measurements at a pair of sensor can be written as a single 

equation for a 2-dimensional column vector.  
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Because the TDOA/FDOA estimates are obtained using the maximum likelihood (ML) 

estimator of cross correlation, the asymptotic properties of ML estimators (2.16) says that 
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where Ji is the Fisher information matrix for the i
th
 TDOA/FDOA pair. As we know, Ji is 

dependent only on the signal and SNR according to 
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it is known that the FIM of the geo-location estimation is given by (2.8) 
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Equation (4.35) conveys two important information: (i) the network-wide optimal 

compression strategy can be achieved in a decentralized way such that each pair of 

sensors can optimize the compression based on their own iG  without knowledge of the 
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operations of other pairs of sensors; (ii) besides the TDOA/FDOA accuracies, the 

location estimation accuracy also strongly depends on the geometry of the emitter and the 

sensors [66]. For the 2-D X-Y location case, the 2×2 location error covariance matrix can 

be replaced by 1−= geoJP [66]. Diagonalizing 1−P  (or geoJ ) using 
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1T

 and letting m)(ξAζ
T −= , where m is the real location of 

target, leads to 
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where region R is the interior of the error ellipse with the i
th
 principal axes length of 

2(κλi)
½
.  

In most sensor-target geometries, the relative importance of TDOA and FDOA is set 

by the target-sensors geometry.  Figure 4.4 and Figure 4.6 show how α controls the 

compression trade-off between the TDOA and FDOA accuracies achieved by our method.  

However, to choose a proper value of α requires knowledge of the target’s location – 

which, unfortunately, is precisely what we are trying to estimate.  However, we can first 

send a small amount of data – enough to roughly determine the geometry; then that rough 

geometry can be used to estimate an appropriate α value that would be fed back to the 

compressing sensor and used to compress the remainder of the signal.  In fact, this can 

even be done to provide repeated updates of α as more data is compressed and sent; this 

corresponds to updating the operating point along the curve shown in Figure 4.4 and 

Figure 4.6.   
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This directly leads to the following simple scheme (not the only one) where the 

compression can be adapted to the geometry.  The scheme is shown in Figure 4.7, where 

circled numbers correspond to the actions of the steps described below. 

Step 1: The central node determines the compression ratio and its associated operational 

compression points based on the requirement of energy consumption and latency. Then it 

randomly picks J pairs of nodes to get J measurements of TDOA and FDOA. In the 

beginning, one of the nodes J1),1,( ≤≤ ii sends a small length of its data to the other )2,(i , 

where rough measurements of TDOAs }~{ , idτ  and FDOAs }~{ ,idv  are measured.  

Step 2: }~{ , idτ and }~{ ,idv are sent to the central node, where the rough prediction of the 

geometry matrix G is estimated.  

Step 3: In term of the estimated geometry matrix G, the central node determines the 

optimal α and informs the nodes )1,(i about this choice and the compress ratio. 

Step 4: The nodes )1,(i compress the data according the compression ratio and the chosen 

α and send the compressed version of its sensed data to the nodes )2,(i . 

                                               

 

 

                                 Figure 4.7: Geometry Adaptive TDOA/FDOA System Scheme.  
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Step 5: The nodes )2,(i  measure the }{ , idτ and }{ ,idv  with the received data from node 

)1,(i  in Step 1 and decompressed data in Step 4. The resulting }{ , idτ  and }{ ,idv  are sent to 

the central node, where the final location of the target is determined.  

Simulations were performed as follows: A target can appear anywhere in a 2-D 5x5 

km
2
 area, within which a large number of sensors is spread. Four sensors are randomly 

picked to form two pairs to estimate TDOA/FDOA. 256 samples are sent in Step 1 to 

roughly estimate the geometry. Finally, 4096 samples are compressed and shared 

between each pair. For comparison, the 4096 data samples are compressed using the 

MSE measure. In the simulation, we use the ratio of the area of circular error probable 

(CEP) [66] with compression to that without compression minus 1 (which corresponds to 

the relative increase in CEP) as the metric.  CEP is estimated by 
2175.0 λλ +  [66]. There 

were 2000 Monte Carlo runs performed for each compression ratio and the average 

values are shown in Figure 4.8 .   Over the range of compression ratio values considered, 

the results in Figure 4.8 show a roughly 5x improvement in CEP for our method relative 

to one that uses the wavelet packet transform but optimized according to MSE. 

 Actually, this geometry adaptive algorithm is optimized with respect to the FIM 

of { }iτ and { }iv  given a chosen α  for each pair of sensor. Although the significant 

improvement is achieved over MSE as shown in Figure 4.8, there is a step left to claim 

that it is optimal with respect to FIM of ex  and ey .  As shown in (4.35).  The correct 

usage of the viable “Perimeter of the FIM” idea to optimizing compression with respect 

to geo-location should be to compress to minimize the trace of 

{ } )tr()tr()ˆ()ˆ( 1−==−+− geoeeee yyxxE JP ; as before, instead of minimizing )tr( 1−
geoJ , we  
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Figure 4.8:  Effect of compression ratio on CEP. 

 

resort to maximizing )tr( geoJ  instead because of their close relationship (4.2).  However, 

the trace of FIM Jgeo depends on the off-diagonal elements of the TDOA/FDOA FIM as 

the following shows.  Let for notational purposes 
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2
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2

21,11,

2

12,

2

11, )(2)()(tr J ,    (4.37)   

where the first two terms in the numerator of each term of the sum depend on the 

diagonal elements of the TDOA/FDOA FIM but the last term depends on the off-
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diagonal elements. If we assume that TDOA and FDOA are uncoupled, i.e., 012, =iJ , it is 

obvious that the algorithm is optimal and α  can be set equal to 

)/()( 2

22,

2

21,

2

12,

2

11,

2

12,

2

11, iiiiii GGGGGG ++++ . However, as shown in Appendix E, the 

assumption that TDOA and FDOA are uncorrelated is generally not met. And although 

the above algorithm provides significant improvement over MSE, there might be further 

potential to go further by maximizing the trace of the geo-location FIM.  In doing so, we 

need to consider the off-diagonal elements of the TDOA/FDOA FIM and we need to 

modify the distortion measure which should be based on (4.37), and that requires 

knowledge of the FIM cross-terms for the TDOA/FDOA.  

   We can conjecture that the cross-terms can be numerically approximated as  

                                  ∑
∑

=

∈




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2112 σ
                                          (4.38) 

However, (4.38) can not be able to compute the off-diagonal terms 12J and 21J  correctly 

by using the wavelet packet transform because each channel in this wavelet packet 

transform has both positive and negative frequency content (see Appendix F where such 

filter banks are called “two-sided” filter banks).  This is not a problem for evaluating the 

weighted trace of FIM because of the squared 2
kf  and  

2
nt  in (4.30) and (4.31).  But for 

(4.37), with its tn fk  term, it is crucial that we have a so-called “one-sided” filter bank that 

has individual positive and negative frequency channels; such filter banks have complex-

valued impulse responses for the channels. After a thorough search of the literature it was 

determined that no directly usable results were readily available for the design of one-

sided, complex-valued, orthogonal, perfect-reconstruction filter banks; Focusing on 
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showing that (4.37) indeed provides the optimal solutions and how (4.38) fit into the 

optimization of (4.37) we resorted to a “quick and dirty” method to develop such filters– 

the result is given in Appendix F.  The advantage of this approach is that existing routines 

for designing and implementing orthogonal PR filter banks can be used with minor 

modifications. 

To test this filter bank we needed a signal that would impinge on each channel but for 

which it would still be possible to analytically compute the FIM elements.  Then we 

could apply the filter bank and equations (4.30) (4.31) and (4.38) numerically compute 

the FIM elements and then compare the results to the analytically derived theoretical 

results for this signal.  A good choice for this signal is a linear chirp signal.  The 

derivation of the FIM for a chirp signal is given in Appendix E and the result is 

                                              


























= ∑

1

2

2
22

α

αα

n

nTJ
.                                     (4.39)            

where α is the sweep rate of the chirp signal.  The comparison of the numerical and 

theoretical results for the case of using a complex filter bank are shown in Figure E.1, 

where it is seen that the numerical results are not very accurate: in the top plot the 

numerical results in red should be a constant, in the middle plot the numerical results in 

red should follow the blue curve of  α2 
, and in the bottom plot the numerical results in 

red should follow the blue curve of  α.  This was disappointing and distressing: if we are 

unable to accurately assess the FIM elements we can not use them to drive the bit 

allocation process. 

 To demonstrate that it is at least possible to evaluate the FIM from signal data, the 

short-time Fourier transform (STFT) was investigated as a replacement for the complex- 
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Figure 4.9: Our compression framework using parallel auxiliary STFT processing to evaluate the FIM 

elements. 

 

valued orthogonal PR filter bank.  The results obtained using STFT are given in Figure 

E.2; notice that the numerical results nearly perfectly overlay the theoretical (only 

“nearly” because there are some slight differences when the plots are zoomed).  Although 

the STFT enables quite accurate evaluation of the FIM, the STFT is not well-suited for 

compression due to the fact that it is not an orthogonal representation.  Thus, we could 

use it simply as an auxiliary parallel mechanism to allow evaluation of the FIM for bit 

allocation to the wavelet packet transformed coefficients, as shown in Figure 4.9.  Each 

sample coming out of the filter bank represents a known time-frequency region and the 

FIM elements can be evaluated over this time-frequency region using the STFT to 

provide the FIM evaluation for the filter bank sample.  This is very similar to how audio 

compression schemes like the mp3 standard use a filter bank to create the values that get 

quantized but use a DFT (via an FFT algorithm) to determine how the bits should get 

allocated to the various filter bank samples. 
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4.1.3 Simulations of Compression Using Parallel Auxiliary STFT Processing 

       
The idea and implementation of using parallel auxiliary STFT processing shown 

in Figure 4.9 will be further exploited in this section through simulations.  Two typical

geometries of the two pair of sensors and emitters are chosen to illustrate the 

improvement obtained by accurate assessment of FIM. These two geometries are shown 

in Figure 4.10 (a) and Figure 4.11 (a), respectively.  Figure 4.10 (a) corresponds to the 

case when TDOA and FDOA are both important for the location of emitter, while Figure 

4.11 (a) corresponds to the case when FDOA is more important for one pair of sensor 

while both TDOA and FDOA are important to the other pair. The Jacobian matrix 1G and 

2G  in (4.36) for Figure 4.10 are
2
:  

   







=

8425.01728.2

5157.18314.1
1G      and       







−
=

6003.21224.2

4777.2255.3
2G  . 

Similarly, the Jacobian matrix 1G and 2G  in (4.36) for Figure 4.11 are  










−−
=

3697.01369.1

4077.03372.0
1G     and      









−

−−
=

6357.13836.1

1011.29176.0
2G  

       Simulation results are shown in 4.10 (b) and 4.11 (b), where the trace of the practical 

error covariance matrix of location is used to compare different algorithms under 

investigation.  STFT-WP FIM is the wavelet packet transform coding that uses parallel 

auxiliary STFT to evaluate the FIM while WP FIM is the wavelet packet transform 

coding that directly use equations (4.30) , (4.31) and (4.3) to compute the elements of the 

FIM. Clearly, STFT-WP FIM is slightly better than WP FIM while  both achived 

                                                 
2
 ( 1G and 2G  incorporate the mismatched units factor (TDOA error is in the unit of ns and FDOA error is 

in the unit of Hz) or other factors determining the functions in (4.33). (See [66] and [84] for details) 
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significant improvement over the wavelet transform coding based on MSE. Results 

marked wtr FIM represent the performance of the wavelet packet transform coding that is 

based on the weighted trace distortion measure in (4.32). The wtr FIM ignores the off-

diagonal element 12,iJ and chooses α  as )/()( 2

22,

2

21,

2

12,

2

11,

2

12,

2

11, iiiiii GGGGGG ++++ . 

According to the Schwarz inequality, 22,

2

22,

2

21,11,

2

12,

2

11, )()( iiiiii JGGJGG +++   is greater 

than or equal to 12,22,12,21,11, )(2 iiiii JGGGG + , which means that the on-diagonal elements of 

geoJ  dominant the off-diagonal elements and it might be good enough to use only wtr 

FIM because it is much simpler than STFT-WP FIM. This is verified by Figure 4.10. (b) 

and Figure 4.11. (b) where wtr FIM is very close to the optimal performance represented 

by STFT-WP FIM.    

4.2 Data Compression for Parameter Estimation with Detection 

 There might be a scenario where sensor 2S  uses its own data and the decompressed 

data from 1S  to first detect the presence of a signal and then estimates the parameter of 

interest. We can derive the Chernoff-distance based distortion. However, based on the 

framework we used for multiple estimation tasks, it is not difficult to derive the following 

Fisher-information-Matrix-Chernoff-Distance-based distortion measure to guide the 

compression algorithm: 

             [ ] ∑
=

≤×−+×
N

n

is
B

Rbtosubject
1

11 )()1())((max xxJ µβψβ  ,           (4.40) 

where ψ  represents any form of the FIM measures in 4.1 and β  is a parameter used to 

control the relative importance of estimation accuracy and detection error.  
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                                                                            Figure  4.10  (a) 
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                                                                                   Figure 4.10 (b) 

 

Figure 4.10, (a) Geometry among the two pair of sensors and emitter, “*” represents the emitter and “o” 

represent the sensors, and “---” denotes the wireless communication channel between each pair of sensors. 

(b)  The comparison of difference compression algorithms on the trace of error covariance of emitter 

location. 
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Figure 4.11 (a) 
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Figure 4.11 (b) 

 

Figure 4.11, (a) Geometry among the two pair of sensors and emitter, “*” represents the emitter and “o” 

represent the sensors, and “---” denotes the wireless communication channel between each pair of sensors. 

(b)  The comparison of difference compression algorithms on the trace of error covariance of emitter 

location. 
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         For example, consider detecting the presence of a signal and then estimating TDOA 

between a pair of sensors in the presence of AWGN.  The distortion measure for 

detection happens to coincide with the distortion measure for DOA. In other words, the 

compression algorithm for DOA should be almost identical to that for detection except 

for slight differences. Therefore the simulations used for testing the joint TDOA/DOA 

application can be applied to the joint TDOA and detection without any changes except 

that we replace weight α with β .  Due to this reason and the reason that the usage of 

(4.39) will be further discussed later in the compression for sequential inference task 

application, we will postpone the simulations until the next chapter.    
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CHAPTER 5                 
 

Data Compression for Sequential Task of Multiple 
Inference Quantities 

     

 Recall the geometry-adaptive compression algorithm that we developed for joint 

TDOA/FDOA estimation, it requires that either a small amount of initial data or very 

coarse compressed data to be shared first to get a rough estimate of the emitter’s location, 

if the rough estimate is inside the predicted error surface, it is possible to determine the 

proper TDOA/FDOA trade-off for compressing and sharing the remaining data and 

refining the rough estimate to a much more accurate estimate that satisfies the 

requirement of the sensor system. On the other hand, if the rough estimate is far away 

from our projected error surface, the fusion sensor can determine that the sensor has not 

enough valuable information and no further sharing is needed. A similar scenario is the 

sequential detect-then-estimate problem, where some compressed data is sent for the 

detection task; once detected, the fusion center will require more data sharing among the 

sensors to complete some estimation tasks. From these two examples, we can see that in 

sensor networks, the inference tasks, rather than occurring simultaneously, are more 

likely to happen sequentially for achieving the maximal information gain under the 

energy and time constraint. Generally, the carrying out of major inferences of interest 

could be preceded by conducting some “preliminary” inference which offers the central 

information fusion center rough information about the process under investigation, since 
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in the complete absence of prior information, global optimization of the inference is 

impossible. These preliminary inference results can be either deciding if the target is 

present or roughly estimating of the geometry among the sensors and target.  Then, after 

estimates of the parameters are found, it is necessary to verify whether or not the 

accuracy of the ultimate inference task at hand is sufficient, then depending on the 

circumstances of sensor networks, the information fusion center must either stop or 

design supplementary inference tasks for estimating the entire collection of parameters or 

some group of them which are of more interest. As we know, the compression 

requirements for the different inference tasks at each sequential stage are different and, 

usually, conflicting. Therefore, optimized compression to handle sequential inference 

tasks requires what we call “task-embedded compression”: the transmitting sensor 

constructs the optimal task-embedded data stream to send only the data needed to 

supplement the already-delivered data for optimal processing for the current task at each 

stage. Although task-embedded compression is similar to the traditional embedded 

coding compression technique, they are quiet different in principle since the data stream 

of traditional embedded coding is constructed based on a single task (reconstruction) and 

cannot be adapted for different requirements for different tasks. In the following, we will 

first use a simple detection-then-TDOA sequential inference problem to illustrate our 

task-embedded compression approach, then generalization to the general case is given.    

5.1  Simple Detection-Then-TDOA Problem  

 Consider the scenario where multiple sensors are deployed to detect and then locate 

RF emitters (e.g., communication or radar transmitters).  At first the sensors would share 

their collected data for the purpose of detecting when they have jointly intercepted a 
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common signal.  After detecting the presence of an emitter, data is then shared among the 

sensors to estimate the emitter’s position using the TDOA method. In these two 

sequential stages, our task-embedded compression can be applied as follows: (i) the data 

stream that is shared during the detection phase is optimally compressed for detection, 

then (ii) the additional data “layer” needed to optimally estimate TDOA is sent.   

  For Gaussian noise, the compression distortion measures for the detection task are 

(3.66)-(3.67) that depend on the SNR of post-compressed data while the distortion 

measures for TDOA are based on its FI in (3.28)-(3.31) that depend on the quadratically-

frequency-weighted DFT coefficients.  Suppose that two bit rates RD,1 and RE,1 for the 

detection task and the estimation task are given, respectively. We can think of these two 

rates as specifying corresponding resource consumption, resource-for-detection UD,1  and 

resource-for-estimation UE,1, respectively, where the resource consumption means some 

combination of energy and time whose exact form is up to different network design 

criteria.  Suppose further that optimizing the two tasks independently for their given 

allocations yields a corresponding probability-of-miss (PM,1) and estimation error 

standard deviation (σE,1)
 1

.  We can visualize the scenario in terms of these performance 

measures as shown in the “conceptual” plots shown in Figure 5.1.  The top plot on the 

left in this figure shows the magnitude-squared DFT of the signal and the noise floor… to 

maximize SNR for the detection task, the most important data is the DFT coefficients that 

have magnitude-squared values above the noise floor.  Suppose that the region shaded in 

blue in the top plot is the optimally selected DFT coefficients for detection given the rate  

 

                                                 
1
 We use probability-of-miss here (rather than the related probability-of-detection) so that the performance 

measures for detection and estimation each have the characteristic of “bigger is bad, smaller is good”. 
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Figure 5.1:  Sequential Tasks with the Initial Trade-Off. 

 

constraint RD,1.  The bottom plot on the left in the figure shows the quadratically-  

weighted magnitude-squared DFT that drives the selection process for the TDOA-driven  

compression. Suppose that the region shaded in solid blue in the bottom plot is the 

optimally selected DFT coefficients for estimation given the rate constraint RE,1.  Note 

that the part that was previously sent for detection (shown in the bottom plot with striped-

blue shading) is already at 2S  so it can be used for TDOA processing.  The performance 

trade-off is shown in the plot on the right of the figure.  We take this performance as a 

“baseline scenario” and see what else may be accomplished with respect to this baseline. 

On the other hand, it should be noticed that an inherent tradeoff exists between different 

stages.  For example, if it is determined that the resource-for-estimate UE,1 is too much to 

meet other important design requirement and has to be decreased while we want to keep 

the estimation accuracy about the same and we wish to keep the resource-for-detection 

UD,1 about the same. This can only be done by forcing the detection stage to send data  
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Figure 5.2: Sequential Tasks with a New Trade-Off .  

 

that would ultimately be helpful in the estimation stage with the consequence of the 

degradation detection performance (an increase in the Probability-of-Miss).  The top plot  

of Figure 5.2 shows a heuristic way for this case where we remove some of the 

previously selected DFT coefficients and include higher frequencies in the detection 

selection set in the detection stage. The new chosen DFT coefficients should take about 

the same number of bits (actually it would likely take fewer bits because of the smaller 

amplitudes at these higher frequencies… but we’ll ignore that here).  The vertical dashed 

lines are the same as in the first scenario and simply show that we are now sending higher 

frequency info during detection than we did before.  In the bottom plot of Figure 5.2, the 

solid yellow shows the new data that we need to send to support estimation… the striped-

yellow shaded data is what was already there from the detection task.   

So the resource-for-estimation is decreased while the location accuracy will be about 

the same.  The detection performance will be worse but the resource-for-detection will be 

about the same.  This performance trade-off is shown on the right side of Figure 5.2, 

where blue points indicate the initial trade-off scenario and the yellow points indicate the 

new trade-off scenario.  Note that the total resource for these two successive tasks has 
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also been reduced. (4.40) gives us the standard optimization methods for us to make 

tradeoffs between detection and estimation and we can use it here in the detection stage. 

This shows that there is a fundamental similarity between the simultaneous task case and 

the sequential task case, compression algorithms for simultaneous algorithm (4.12), (4.15) 

and (4.39) can be easily modified to give the following sequential algorithm.    

 5.1.1 An Algorithm for Sequential Detect-Then-TDOA  

 

Detection stage 1: Maximizing SNR for the Detection Task according to (4.40)                                 
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where X[n] is the DFT of the data, )(
1

2
nbq is the quantization noise power as a function of 

the number of bits 
1n

b allocated to that coefficient, DR is the rate for Stage 1, and the 

parameter β  controls the tradeoff between TDOA estimation and detection.   The first 

summation term in (5.1) measures the importance of a bit for TDOA estimation while the 

second summation measures the importance of the bit for detection.  Thus, setting β = 0 

causes this allocation to be done with no consideration of the Stage 2 task of TDOA 

estimation; however, increasing β  forces more consideration of the subsequent Stage 2 

task.   Thus, instead of achieving trade-offs by the “discard-and-move” operations 

described above, here the trade-off is achieved byβ . 

Stage 2: Maximizing Fisher Information for the TDOA Estimation Task According 

to (3.28) 

        In this stage only TDOA is of interest and its accuracy needs to be refined.  Thus we 

will maximize  
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where ER is bit budget for the stage 2, and the { }1nb  are the bits already allocated in the 

first stage. 

5.1.2 Simulation Scenario  

  In terms of practical coding, unlike the simultaneous case, quantizers must be 

changed to dead-zone uniform embedded quantizer in order to support the task-embedded 

data stream between the sensors. Moreover, for the ease of implementation and testing, 

we will focus on a trade-off scenario that is an alternative to that shown in Figure 5.2 ; 

the case considered is shown in Figure 5.3 where the resourses for different tasks are held 

fixed and only performance is changed during the trade-off: performance points move 

along the vertical dotted lines.  However, it should be pointed out that once this trade-off 

is obtained, estimation bits could be discarded to decrease UE and increase σE,2; thus, this 

new fixed-task-resource scenario can actually be made equivalent to the fixed-estimation-

accuracy/reduced-estimation-time scenario described above. 

Sequential Tasks Trade-Off
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Figure 5.3: Trade-off  for fixed task resources .  
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For the simulation results below we imposed the conditions: 

• During the first detection stage, in order to satisfy a resource constraint DU , the 

data is compressed with a compression ratio of 8:1. 

• During the second estimation stage, in order to satisfy a time constraint EU , 

Stage 2 bits are added such that the total compression ratio is 5:1.      

         As illustrated in Figure 5.4, the variation of the parameter β  enables the tradeoffs 

for the detection performance during the first detection stage and the location accuracy 

during the second estimation stage.  Actual simulation results are shown in Figure 5.5, 

where the actual probabilities in the detection stage were not evaluated due to the fact 

that such evaluations would take tremendous time. The results in Figure 5.5  show the 

various SNR-σE points that can be achieved for fixed UD and UE; the points in the upper 

right corner favor detection while those in the lower left corner favor estimation. Note 

that the values of the post-compression detection-stage SNR were quite low; this is due to 

the large compression ratio that was imposed. However, detection accuracy is not only 

dependent on post-compression SNR but also on the size of data; any increase in SNR 

indicates a significant decrease in error probability for large sample sizes (3.55). In 

another point of view, it should be noted that this SNR is increased via the cross-

correlation by the time-bandwidth product, which generally is large enough to pull such 

low SNR values up to an easily detectable level [5][69]. The specific operating values 

shown in Figure 5.5 are of less importance than the fact that the simulation results verify 

that the algorithm achieves a curve of trade-off points as expected. 
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Figure 5.4:  Conceptual illustration of the trade-off accomplished via choice of the β parameter. Where 

SNR1=SNR2=15 dB. 
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Figure 5.5:  Simulation results illustrating the achieved trade-offs. 

 

5.2 General Sequential Data Compression Algorithm  

 Based on the detection-then-TDOA example, the general idea of task-embedded 

compression is very clear. In the following, we extend it into the generalized case. 

Without loss of generality, we assume there are only two stages and the ultimate goal is 

to estimate the unknown vector ],,[ 1 pθθ K=θ  or unknown r×1  vector )(θga = .  

First Inference Stage (Detection or Rough Estimation):   
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 In this stage, we either don’t know if the target is present or we have no priori 

geometry to compress data optimally. Therefore, responding to different processes under 

investigation, optimization of the compression algorithm can be any one of the following 

three under the constraint that the summation of the bit allocation vector 

],,[ 211 nn bbB L=  is not greater than 1R .  

1. Maximize the Chernoff distance ),( 11 B
s xµ for the detection purpose, i.e., 
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      where nS is the ON transform of 1x .  

2. Maximize the information utility function ψ  of FIM for the rough estimation 

purpose. ψ  could be either determinant or trace
2
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2 We might only need to maximize determinant or trace of a sub-matrix of the Fisher information matrix, 

corresponding to certain inference task of interest. Although weighted trace can be used too, due to 

the lack of information to determine the weight α,  we have to let us stay with the assumption that all 

the inference tasks are equally important at the inference stage 1 
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      where  
j

n

i

nij

n

SS

θθ ∂

∂

∂

∂
=Γ .  

3. Maximize the weighted combination of information utility function ψ  of FIM 

and Chernoff distance )( 1xµ s , i.e., ),()1()),(ˆ( 1111,1 BB s
xµxJ θ ββψ −+  for 

situation where the first stage is forced to send data that would ultimately be 

helpful in the second stage. 

Second Inference Stage (estimation refinement):  

 In this stage, central fusion sensor could determine the optimal strategy to do the 

subsequent compression to refine the estimation given the known the presence of target 

or priori knowledge for the relative importance of multiple estimate for a specific task 

from the first stage. The compression can take one of the following two cases under the 

constraint that the sum of the supplemental bit allocation vector [ ]2122 ,, nbbB K=  is not 

greater than 2R  : 

1. Only a single θ  is of interest, we need to  
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   2.   The whole set parameter ],,[ 1 pθθ K=θ  are of interest, we need to  
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where Ĝ  is the pr ×  Jacobian matrix θθ ∂∂= /)(ˆ gG  estimated from the first stage.  
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         Two more simulations are performed to exploit this task-embedded compression 

algorithm. The first simulation is for the sequential multiple parameter estimation, where 

in the first stage the determinant optimization algorithm is used to get a rough estimate of 

TDOA/FDOA/DOA according to (5.3). Based on which, one of TDOA and FDOA and 

DOA estimate is determined as the dominant parameter that needs refining. Then in the 

second stage, subsequent compression for any one of TDOA or FDOA or DOA is 

performed according to (5.5). The determinant method is chosen for the first stage 

because it is more likely to produce the best tradeoff among three different location 

methods, TDOA, FDOA, and DOA, which provide us with a good initial estimate of the 

parameter when we have no prior information of the location of the emitter. The 

compression ratio imposed on the first stage is 8:1, and bits are added in the second stage 

until the total compression ratio is 5:1. Pre-compression SNR at the two sensors (SNR1 

and SNR2 ) are both set as 15 dB.  The effectiveness of this method is shown in Table 1. 

The first three rows of Table. 1 correspond to roughly estimating TDOA/FDOA/DOA in 

the first stage by maximizing determinant of FIM  and refining only one single parameter 

TDOA , FDOA  and DOA  in the second stages, respectively.  The first three columns are 

the error standard deviation for the rough estimation of TDOA (ns), FDOA (Hz) and 

DOA (m 
o
C) in the first stage, respectively and the last three columns are the final 

estimation error standard deviation for TDOA, FDOA and DOA in the refining second 

stage, where the shaded and underlined shows the final estimation error standard 

deviation of the parameter wanted to be refined in the second stage.  The estimation 

accuracies for TDOA/FDOA/DOA without any compression are also shown in Table.1 

for the comparison purpose. We can see that at the second stage, the accuracy of the 
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parameter of interest is very close to the case where no compression is performed. The 

scheme of second simulation is same to the first one except that the detection is the 

required task in the first stage and compression for maximizing SNR is performed instead 

in this stage. The results are shown in Table 2.                             

Table 5.1, Sequential Example, Rough Multiple Estimate - Then- Refine Estimation 

 First Stage Compression  Second Stage Compression 

 

TDOA 
(S1) 

FDOA 
(S1) 

DOA 
(S1)  

TDOA 
(S2) 

FDOA 
(S2) 

DOA 
(S2) 

det(FIM) 1.7655 3.0168 0.10761 TDOA only 0.61107 1.8143 0.068 

det(FIM) 1.8732 3.1543 0.10428 FDOA only 0.82308 1.5719 0.068 

det(FIM) 1.8466 3.0799 0.1058 DOA  only 0.825 1.8035 0.059 

        

     

TDOA 
(w/o) 

FDOA 
(w/o) 

DOA 
(w/o) 

     0.51755 1.3621 0.0501 

 

Table 5.2, Sequential Example, Detection-Then -  Estimation 

 First Stage Compression  Second Stage Compression 

 TDOA 
(S1) 

FDOA 
(S1) 

DOA  
(S1) 

 TDOA 
 (S2) 

FDOA 
(S2) 

DOA 
(S2) 

Detect 1.6472 3.1896 0.1005 TDOA only 0.6028 1.8306 0.0652 

Detect 1.6388 3.2728 0.1000 FDOA only 0.8132 1.5575 0.0667 

Detect 1.6132 3.1146 0.0973 DOA only 0.843 1.7125 0.0632 
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CHAPTER 6: 

Conclusion 

 

 This dissertation addresses using data compression as the tool to improve the energy 

efficiency and timeliness of wireless sensor networks for inference tasks 

(estimation/detection). Firstly, investigations are performed to assert that compression 

can be deployed as a powerful and effective tool for the optimal trade-offs between rate, 

energy, and accuracy in the wireless sensor network; Secondly, instead of using the 

traditional MSE distortion measure that is only weakly related to the quality of estimation 

and detection tasks, we use distortion measures based on the Fisher information for 

estimation tasks and the Chernoff-distance for detection; The new developed distortion 

measures are able to better evaluate the underlying information embedded in the collected 

data for estimation/detection. As demonstrated by exhaustive examples of practical 

interest, the compression algorithms based on our proposed distortion significantly 

outperform those based on MSE. Finally, although the sequential and simultaneous 

inference tasks are typical in wireless sensor network applications, no other researchers 

have ever addressed compression for these two issues for wireless sensor networks, and 

even for networks of several macrosensors.  We develop the theories and compression 

algorithms for the general simultaneous estimation problem and joint estimation and 

detection problem as well as the theories and algorithms for “task-embedded 

compression” to support sequential multiple inference tasks. In all, this dissertation sets 

up the whole compression structure for inference tasks in wireless sensor networks and 
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the results can be used as a key component of and incorporated into the task-driven 

network management and sensor management.  

 Despite these accomplishments, there are still some details insides our framework for 

which some further work are needed: 

1. In Chapter 3, although the general FI and Chernoff distance of quantized 

noisy measurements are formulated and are applicable to all types of noise 

and quantizers, in this dissertation, for the purpose of simplicity, we limit our 

focus mainly on the case when the noise is Gaussian noise and the quantizer is 

uniform quantizer due to their widely usage in literature and propose the 

corresponding approximation model, which is used as a replacement for the 

true model in Chapter 4 and 5. Further exploitation of other type of noise will 

definitely further strengthen our compression structure.       

2. For compressions for estimation, in general the FIM can depend on the 

parameter vector values, although in this dissertation, we limit ourselves to 

some practical estimation problems the FIM does not depend on the parameter 

values or at least the FIM can be separated into the part containing only the 

unknown-parameter-centric part and the data-centric part containing to which 

our “maximize Fisher information” approach can still be applied. However, 

there may exist the case where the Fisher information depends on the 

parameters which can not be pulled out of the data as in (3.43).  We have 

proposed the correct approach for this problem but have not yet fully explored 

its application. Thus, some further research is needed to determine if there are 

estimation problems for which the “maximize Fisher information” approach 
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can not be directly applied and then demonstrate how to attack them using the 

minimax approach. 

3. Regarding to the geometry adaptive algorithm for joint TDOA/FDOA 

estimation, although we demonstrate that we can use parallel auxiliary STFT 

to access the FIM elements and help the algorithm to evaluate the right 

relative importance of wavelet packet coefficients to joint TDOA/FDOA 

estimation. To improve the computational efficiency, Further works is still 

needed to develop filter banks that are well-suited to both compression and 

FIM evaluation    

4. There are still some small details surrounding the detection problem, such as 

instead of real probability of detection, we use the Chernoff distance as the 

indication of detection. Although this is true from the theory, further work is 

still needed to verify it.  

5. Although a lot of effort is paid to choose and improve the computation 

efficiency of compression algorithms to achieve maximal saving of time and 

energy, further examination of the computational and implementation aspects 

of the algorithm is still needed, and hardware implementation is desired in the 

future.     
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APPENDIX A 
 

A.1 Fisher Information Separation  
 

Theorem A.1: Assume that we have a set of data x whose PDF p(x;θ) depends on a 

parameter θ to be estimated.  If the data can be split into two independent sets  

),(~ 111 θxx p  and ),(~ 222 θxx p ; then (due to independence) ),(),(),( 2211 θθθ xxx ppp = .  

Let the individual PDFs satisfy the “regularity” condition (2.3)  
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Let J be the joint Fisher information of the complete data set x and let Jk be the Fisher 

information of the k
th
 subset xk; then J = J1 + J2.  Or more equivalently,  
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Proof:   Because 
1
x  and 2x are independent, we have ( ) ( ) ( )θθθ ;;;, 221121 xxxx ppp =  and 
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                                                                                                                                     (A.1.3) 

Due to independence the third term on the right hand side of (A.1.3) can be written as  
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and each term on the right hand side of (A.1.4) is zero due to the assumed regularity 

condition.  Thus, (A.1.3) reduces to (A.1.2) and the claimed result is proved. 

 

A.2 Chernoff Distance Separation  
 

Theorem A2: Consider a problem consisting of deciding between two hypothesis 0H  

and 1H  based on a set of observed random vectors x . Hypotheses 0H  and 1H are (no 

target) and (target present) hypothesis, respectively, and are represented by 
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If the data can be split into two independent sets 1x  and 2x , each of which follows  
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 Let ))(),(( 10 xx ppsµ  be the joint Chernoff distance of the complete data set x and let 

))(),(( ,1,0 kkkks pp xxµ be the Chernoff distance of the k
th
 subset xk; then =))(),(( 10 xx ppsµ  
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Proof:   Because 
1
x  and 2x are independent, we have ( ) ( ) ( )22,011,00 xxx ppp =  and 

( ) ( ) ( )22,111,11 xxx ppp =  then  



 133 

( )

∫∫
∫∫

∫ ∫∫

−−

−−

−−−

−−=

−=

−=−

222,1

1

22,0111,1

1

11,0

222,1

1

22,0111,1

1

11,0

2122,1

1

22,011,1

1

11,01

1

0

)()(ln)()(ln

)()()()(ln

)()()()(ln)()(ln

xxxxxx

xxxxxx

xxxxxxxxx

dppdpp

dppdpp

ddppppdpp

ssss

ssss

ssssss

 

                        (A.1.8) 

Thus the claimed result is proved. 

 



 134 

APPENDIX  B 
  

B. 1: Fisher information of scalar quantized data 

 

 Let ( )nnnbnr ωθξ += )(Q , and 
n

pω  denote the probability density function (PDF) of 

nω . The thresholds of the scalar quantization of nχ  { }it  is illustrated in Figure2.3, where 

nbM 2= . The probability of nr  falling into the interval ],( 1t−∞  can be thereby calculated 

as                 
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where 
nωη  is the cumulative distribution function for PDF of  nω and is defined as  
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 Similarly, the probability of nr  falling into the interval ),[ 1 ∞−Mt  are calculated as                 
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Except for these two end points, all other probability in the interval [ )1, += jjj ttI  can be 

calculated as 
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Applying Leibnitz’s rule, (B.1) yields 
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(B.5) makes it possible to get the closed form of the Fisher information of any scalar 

quantized data. With it, the derivative of (B.3) and (B.4) with respect to θ  are        
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 Plug these results into (3.12), the Fisher information of nb bit quantized coefficient nχ  

is            
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B. 2, Approximation model 

     Consider 

                                                      εων += 1                                                             (B.9) 

where v  is the N×1 vector of the summation of receiver noise and quantization noise, 

and ε is the N×1 vector of quantization noise 
nε  which is modeled as white and uniform 

in the interval ]2/,2/[ ∆∆− , and 1ω  is the N×1 vector of the white Gaussian noise 

coefficients nω  with zero mean and variance 2σ . Now, our question becomes how to 

analyze the PDF of nv  and approximate it properly.   
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As we know, the probability density function of the sum of independently distributed 

random variables is given by the convolution of their respective probability density 

functions, i.e.  

                                            )(*)()( xpxpxp εωv 1
= .                                              (B.10) 

The characteristic function is very useful for determining the probability density 

function of a sum of independent random variables. The characteristic function of a 

random variable X  is defined as  
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That is, )(wC  is the complex conjugate of Fourier transform of the probability density 

function )(xp . 

The result (B.10) can be related to the characteristic function. It is well known in 

Fourier transform theory that the transform of a convolution is the product of the 

respective Fourier transforms. Denote the characteristic functions of 

),(),( xpxp
1ωv and )(xpε by ),(),(

1
wCwC ωv and )(wCε  respectively. Then it follows 

that                                              

                                            )()()(
1

wCwCwC εωv = .                                                (B.12) 

The probability density function of v is then determined by the inverse Fourier transform 

of )(wCv .  

     The characteristic function for a normal distribution with mean u and variance 2σ is   

                                                 )2/exp()( 22wjuwwC σ−=                                                (B.13) 

The characteristic function for a uniform distribution on the interval ],[ ba  is  
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Hence, we can calculate )(wCv by  

                                   )2/exp(
2/

)2/sin(
)()()( 22w

w

w
wCwCwCv σεε −

∆
∆

== .                  (B.15) 

The inverse Fourier transform of (B.15) is very complicate, but we can approximate 

)(wCv  as a Gaussian distribution  

                             )2/exp()(
~ 22wwC vv σ−= , 12/)var( 222 ∆+=+= σσ YXv                 (B.16) 

under the condition that the null-to-null bandwidth of the characteristic function 

)(wCq ∆/4π  is larger than σ/6 , within which more than 99.7% of the area of the 

characteristic function )(wCn is included.  

       Here we give some numerical results that show the effectiveness of the Gaussian 

approximation used for the FI with multi-bit quantization.  We assume that we have a set 

of noise-free coefficients that lie in the range ±A. A noisy version of the coefficients 

having additive Gaussian noise of variance 2σ is quantized to b bits using a mid-step 

uniform quantizer with quantization cell size given by  

                                                         
2/12 1

22

−
+

=∆ −B

A σ
.                                                    (B.17) 

By using our approximation condition, we can get how many bits are at least needed in 

order for the approximation (B.16) to be valid.  

3/2

/6/4

πσ
σπ

≤∆⇒

≥∆
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                                      (B.18) 

Under the inequality (B.18), we need 7.2≥B bits at 15 dB and 2≥B  quantizer at 

PSNR=10 dB (Uniform quantizer cannot quantize the signal with fractional bits, 

therefore 3 bits is needed at PSNR=15 dB and 2 bits is needed at PSNR=10dB). If we 

loosen the approximation condition of approximation (B.11) a little bit, i.e., instead of 

constraining the mainlobe of )(wCq  must contain 99.7% energy of )(wCn , we permit 

some energy leakage of )(wCn  and let the mainlobe of )(wCq ∆/4π  include 95 energy of 

)(wCn  (that is, ∆/4π  is larger than σ/4 ). In the later case, only a 2-bit quantizer is 

needed at 15dB. The results provide motivation that at least for low PSNR the 

approximation seems to be valid even down to the lowest number of bits for which it is 

applied.  For higher PSNR the approximations at 2 bits will be poorer;    

        Next, we plot the characteristic function to support the approximation model (B.16). 

As illustrated in Figure B.1, the approximation is perfect when the quantizer is 3 bits and 

PSNR is 15 dB. For 2-bit quantizer at PSNR=15dB, although there exists a little bit of 

difference between the approximation and the true distribution, but it is still a pretty good 

approximation. If the PSNR decreases to 10 dB, the condition for perfect performance of 

the approximation model only needs 2-bit quantizers.   

   The validity of this approximation can be further tested analytically by comparing 

the Fisher information under the approximation with its true expression in (B.8).  For nb -

bit uniform quantization, the thresholds are{ }nnn mmm ∆∆+−∆− ,,)1(, K , where  
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                                                    Figure B.1,  (A)  
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                                                                      Figure B.1 (B).  
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                                                                       Figure B.1 (C) 

Figure B.1: Comparison of characteristic function between true model and approximation model (A)3-bit 

quantizer at PSNR=15dB; (B) 2-bit quantizer at PSNR=15dB; (C) 2-bit quantizer at PSNR=10 dB. 

   

2/Mm = and n∆ is the step size of quantizing )(θχn .  The closed form of Fisher 

information is:  
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where ( ) ∫ ∞−
−==

x

dttxx
n
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1
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)/(Φ 2

π
σηω . The expression of the Fisher 

information under the approximated model is  
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and the Fisher information without any quantization is given by  
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Notice that (B.19) and (B.20) and (B.21) all have the product factor [ ]2/)( θθξ ∂∂ n
in 

common. In order to see the difference between the true model (B.19) and the 

approximate model (B.20), and the degradation effect on Fisher information by 

quantization, we only need to compare the factor ),),((Ι σθξ nnt ∆  in (B.19), ),(Ι σna ∆  in 

(B.20) and )Ι(σ in (B.21) under different values of )(θξn and 2

n∆ and σ . In the following 

numerical results, we assume that )(θξn varies in the range from -1 to 1, σ is determined 

by different PSNR and nb

n 2/)22( σ+=∆ , the values of ),),((Ι σθξ ∆nt  and ),(Ι σ∆a  and 

)Ι(σ are computed and shown in Figure B.2. When PSNR=10 dB, the approximation 

model fits well with the true model when the number of bits is greater than 1 bit. When 
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PSNR is increased to 15 dB, the number of bits required for the approximation model to 

fit well with the true model is increased to 2 bits. Figure B.2 not only further verify the 

fact that quantization decreases the Fisher information since ),),((Ι σθξ ∆nt  is always less 

than )Ι(σ , but also illustrates there is some limitation for us to use the approximation to 

replace the true model. We can only use the approximate model when the bits of 

quantizer is greater given threshold which is dependent on the variance of noise σ . This 

thresholds for different σ is tabulated in Table B.1.                                                                    

 

PSNR 

Bits 
5 10 15 20 25 30 

1 х х х х х х 

2 √ √ х х х х 

3 √ √ √ х х х 

4 √ √ √ √ √ х 

5 √ √ √ √ √ √ 

Table B.1,  Fitness of the approximation model with the true model, √ means fit while Х means not  

 

B.3. Chernoff distance of scalar quantized data. 

 Proceeding as before, we can get the close form of Chernoff distances of scalar 

quantized data. At the two end points, the probability ];[ 0

ˆ0 Hbf n

x

rn
 and ];[ 0

ˆ 1 HMf M

n

x

r
− can be 

calculated by:                
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and 
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(b) PSNR = 15 dB 

 

Figure B.2: Comparison of value ),),((Ι σθξ nnt ∆ and ),(Ι σ∆a  under different values of )(θξn and 

2

n∆ when (a) PSNR =10 dB, (b) PSNR=15 dB. 
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respectively. On the other hand,  ];[ 1

ˆ0 Hbf n

x

rn
 and ];[ 1

ˆ 1 Hbf n

x

r
M

n

− are same to (B.1) and (B.3) 

respectively. The PMF ];[ 0
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x

r
q

n
within each quantizer bin is                                  
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whereas  ];[ 1

ˆ
Hbf n

x

r
j

n
 is equal to (B.4).  

         Plugging (B.1), (B.3), (B.4), (B.22), (B.23) and (B.24) into (3.xx), we can write the 

closed form of Chernoff distance given the quantized sample nr  is:                                         
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APPENDIX C 

 Modification of standard image compression methods for pattern 

recognition 

There is also a need for compressing images in timely and energy-saving fashion for 

distributed image processing applications in wireless sensor networks. One of the most 

important ones is for pattern recognition (PR) where the images must be transferred from 

one node to the other before the target recognition task (decision of the presence of target 

and estimation of its positions) can be completed. Due to the reason that the image 

usually contains larger amount of data than one-dimensional data, very heavy lossy 

image compression must be employed in order to accomplish the image transfer within 

the energy and time requirements of the wireless sensor network. A common approach is 

to use standard image compression such as JPEG or the wavelet-based algorithm (used in 

JPEG 2000 [10],[11]) to compress the image. The compressed image is then transferred, 

decompressed, and processed by the specified algorithms for recognition. Walls and 

Mahalanobis [55] have studied the effects of the standard wavelet-based compression on 

the performance of an ATR system that uses the maximum average correlation height 

(MACH) filter and the distance classifier correlation filter (DCCF). It was shown that 

these two correlation filters can recognize patterns in IR and SAR imagery at high 

compression rates. Sims [56] discussed some data compression issues in automatic target 

recognition and introduced a simple spatial signature metric for distortion quantification 

of the decompressed data. As suggested in Chapter 3, although it is convenient to apply 

standard image compression techniques directly in target recognition applications, they 

may not be able to achieve the best performance. This is because the standard image 
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compression algorithms aims at retaining image fidelity in terms of perceptual quality 

and mean squared error (MSE) rather than preserving spectrally significant information 

for PR. In this appendix, we apply the same idea that we proposed in Chapter 3 and 

develop a new distortion measure to replace the perceptual quality and MSE for 

compressing images for PR, and show the new algorithm can help achieve better 

compression performance at the same recognition accuracy as standard compression 

algorithms, or enhance the recognition performance at the same compression 

performance as standard compression algorithms.  

Different from the optimization formulation that we proposed in the body of the 

dissertation, here we simply modify the standard compression algorithms so they can be 

used for pattern recognition to achieve both higher compression ratio and enhanced 

recognition performance. The reasons for this is two-fold: (1) provide a syntax-

compatible interface, where only minimum changes are needed at the encoder and 

nothing is changed at the decoder, which can blindly decode the bit-stream by assuming 

that it is a standard compressed image. This will give a lot of leverage to the designer of a 

sensor network because only the transmitting sensor needs modifying while the rest is left 

untouched; (2) benefit from the existing advantages that standard image compression 

algorithms provide (such as simple hardware implementation, progressive transmission, 

optimal truncation, etc). For example, the option of progressive transmission is important 

for the sequential inference tasks (see Chapter 5). For example, in the beginning, only 

bits carrying relevant information for pattern recognition is transmitted, if requested, in 

the following, more bits carrying reconstruction information will be transmitted. The 
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proposed algorithms can also incorporate the operations of denoising, edge enhancement, 

and compression in one encoding process, thus saving processing time.  

 

C.1 Standard Image Compression Algorithms 

 JPEG and wavelet-based compression are the two most widely used lossy image 

compression algorithms. We briefly review their principles and point out that they are not 

optimal compression algorithms for PR. 

The JPEG compression is based on the discrete cosine transform (DCT), which has 

high energy compactness capability and a fast algorithm. An image to be compressed is 

first divided into 8×8 pixel blocks, which are then transformed using a DCT to the 

frequency domain. The DCT transform gets low frequencies into the upper left corner of 

each block, and high frequencies into the lower right corner. Many image blocks have 

significant coefficients only at low frequencies and thus in the upper left of each block. 

JPEG is based on the fact that our visual perception is typically less sensitive to high-

frequency than to low frequency variations. To minimize the visual degradation of the 

coded images, JPEG performs a quantization to keep low-frequency coefficients and 

discard high-frequency coefficients by dividing the DCT coefficients by the components 

of a quantization matrix as shown in the following: 

                                                               










⋅
=

ij

ij

ij
Qq

T
roundT̂ ,                                       (C.1) 

where ijT  and ijT̂  are the DCT and corresponding quantized coefficients at location (i,j), 

respectively; ijQ  are the components of the quantization matrix  
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 and q is the quality factor that controls the compression ratio. As can be seen from the 

quantization matrix, the quantization steps are small in the upper left (low frequencies), 

and large in the lower right (high frequencies). The result of the division is that many 

high-frequency coefficients become zero, and the low-frequency coefficients undergo 

only minor adjustment. After quantization, each quantized block is converted into a 64-

element vector using the zigzag order and coded by a run-length encoding method. 

Finally, a lossless entropy coding is performed to get further compression. For 

decompression of a JPEG image, the reverse process is performed to reconstruct the 

image from the compressed stream. Wavelet-based image compression has been 

demonstrated to provide better compression performance than the JPEG at high levels of 

compression, and was adopted in the new image compression standard JPEG 2000 

[10],[11]. The famous embedded zero-tree wavelet (EZW) [10] algorithm first performs 

the wavelet transformation on the image to be compressed. The wavelet transformation 

decomposes the input image into a set of subbands of various resolutions. Figure C.1 

shows a three-level wavelet decomposition of an image, where L and H denote the low-

pass and high-pass approximations, respectively. The coarsest subband is a low-pass 

approximation of the original image, and the other subbands are finer-scale refinements.  
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Figure C.1 Three-level wavelet decomposition 

 

The EZW then scans wavelet coefficients subband by subband, and calculates the zero 

trees by marking the coefficients appropriately according to their significance with 

respect to a given threshold. The zero tree is an efficient method to represent the wavelet 

structure and to quantize wavelet coefficients by discarding the coefficients of the same 

orientation and same spatial location at finer scales. Arithmetic coding is finally used to 

entropy code the quantized coefficients. Due to the multi-resolution nature of wavelet 

decomposition, higher compression ratio can be achieved and more high frequency 

components can be saved. Despite its differences from JPEG, EZW nonetheless is based 

on the same principle of discarding the high-frequency coefficients. 

From the above review, we can see that the standard compression algorithms were 

developed for visualization, so they always preserve low frequency and discard high-

frequency coefficients. When applied to compress images for PR, they are not optimal in 

terms of the achievable compression ratio and recognition performance, because for PR 

high frequencies play a much more important role in discrimination than low frequencies. 

Edge enhancement (removing low frequencies) has been proven to be very effective in 

improving a PR system’s discrimination capability. Therefore, if we eliminate low-
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frequency components during compression, it will have several benefits. First, it can 

enhance the discrimination performance important for pattern recognition. Second, it 

makes it possible to integrate edge enhancement and denoising into the same 

compression process and thus reduce computational complexity. Finally, it can increase 

the compression ratio significantly. This is because the magnitudes of low-frequency 

coefficients tend to be much larger than that of high-frequency, and we only need to 

encode middle-to-high frequency coefficients of relatively small magnitude.  

C.2  Distortion Criterion for Compressing Images in PR 

Let ),( yxr denote the target image and ),( yxs be the observed input scene that 

contains the reference image ),( yxr and additive input noise ),( yxn . When the target is 

located at unknown coordinates ),( 00 yx , the input scene can be written as  

                                  ),(),(),( 00 yxnyyxxryxs +−−= ,                                     (C.2)                                                                

The noise ),( yxn is assumed to be zero-mean additive Gaussian noise. Let ),( yxh be 

the recognition FIR filter being used. The resulting output ),( yxc is given by  

                                  .),(),(),( ∫∫ ++= dmdnynxmhnmsyxc                                 (C.3) 

In particular, ),( yxh is the MSF when ),(),( yxryxh = and is optimal in the sense of 

producing the maximum output SNR: 

0

2
),(

N

dudvvuR
SNR

∫∫= , 

where 0N is the noise spectral density, ),( vuR is the Fourier transform of ),( yxr , and 

u and v are frequencies respectively along the x axis and y axis. If ),(),( yxryxh = , (C.3) 

gives the correlation-based pattern recognition (CRP). CPR has been extensively 
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investigated due to its several advantages over other pattern recognition methods, which 

include fast optical implementation, shift invariance, relative senor independence, and no 

need of target segmentation. Therefore, as the benchmark, in the simulations, CPR is 

used as the optimal pattern recognition method. Usually, correlators must be able not 

only to identify the objects in an input image but also to locate the desired target in the 

input scene. Ideally, ),( yxc should have a large peak located at ),(),( 00 yxyx = and small 

values elsewhere. However, the noise in the input scene can obscure the peak and/or shift 

it from its nominal position. According to the theory of parameter estimation, the shifted 

coordinates, denoted by ( )00
ˆ,ˆ yx , can by estimated using maximum a posteriori (MAP) 

estimate,  

     
{ },)),(ln(),(),(maxarg)ˆ,ˆ( 00000

),(
00

00

yxpNdxdyyyxxryxsyx
yx

+−−= ∫∫    (C.4) 

where ),( 00 yxp is the coordinate a priori distribution density. This is because the estimate 

having the minimum probability of error is the one that has maximum a posteriori 

probability that the coordinate has a particular value given the input signal ),( yxs . It can 

be proven that the Cramer Rao Lower Bound on the variances of the location errors in 

−x  and −y directions are given by [54]  
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where ),( vuR is the Fourier transform of ),( yxr , and u and v are the frequencies along 

the −x axis and −y axis. xc and yc are some constants. This view drives us to choose the 2-
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D DFT as our transform to allow discarding less useful frequency components and guide 

the quantization of the rest of coefficients. Using the 2-D discrete Fourier transform on 

(C.2) and using similar procedures as in Section 3.1, the Fisher information for the 

location estimation in  −x  and −y directions are 
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where ),( vuR  is the Fourier transform of ),( yxs , whose size is NM × , and ),(2 vuq is 

the variance of the quantization noise on the Fourier coefficient at ),( vu . From (C.7) and 

(C.8), we can see that the accuracy of locating the reference image in the received image 

depends more on the high frequency components than low frequency components, It also 

can be seen from (C.7) and (C.8) that the high frequency coefficients in ),( vuR  should 

be weighted more heavily than the low frequency coefficients. This implies that high 

frequency components play a more important role than low frequency components in PR. 

So for compressing images for PR, more weight should be given to the important high 

frequency components instead of to the low frequencies.  

Since maximizing 
0x

J and 
0y

J can achieve improved location accuracy in pattern 

recognition, (C.7) and (C.8) can be used as criteria for image compression in CPR. 

Applying the approximate model in Chapter 3, if we replace ),( vuR with ),( vuS , and 

treat the x and y directions equally important, we can add 2
xF and 

2
yF to form a single 

tractable and data centric distortion measure,  
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We can use the same numerical optimization method as in Chapter 3 to design an optimal 

transform coder according to (C.9) under the bit constraint R. However, here we simply 

modify the standard compression algorithms to reflect this criterion so they can be more 

suitable for image PR. For example, for JPEG compression, we only change their 

quantization step and leave the other processing steps untouched. The advantage of doing 

such is that we are still able to use the standard decoders to decompress the images 

compressed by the proposed algorithms. 

C.3 Modifying the Standard Compression Algorithms for CPR 

 We first modify the JPEG so it can be more suitable for CPR. The DCT is closely 

related to the discrete Fourier transform (DFT). Actually, DCT coefficients qy  of any m-

point sequence x are related to the m2 -point DFT coefficients qy
(
 of the symmetrically 

extended sequence, x
(
, by a constant scale factor, which is signal dependent; i.e.,  

                                          q
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where mcq /1=  when 0=q , and mcq /2=  otherwise. 

The numerator of the summation (C.7) and (C.8) can be approximated by  
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for each of the 8×8 DCT blocks within a scaling factor that has no effect on the 

compression. For the criterion obtained in Section C.2, we know that high-frequency 
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DCT coefficients should be weighted and retained with refined quantization, whereas 

low-frequency DCT coefficients should be discarded or quantized coarsely. This can be 

done by carefully selecting a quantization array. For simplicity, we rotate the JPEG’s 

quantization matrix by 180 deg and use it as our quantization matrix: 
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49647887103121120101
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*Q  

This rotated matrix can perform fine quantization for high frequency DCT coefficients 

and coarse quantization for low-frequency DCT coefficients, because the quantization 

steps are small at the lower right and large at the upper left corner. Thus the modified 

JPEG for CPR involves the following steps. After DCT transformation, each DCT block 

is weighted by a weight matrix and then quantized using the 180-deg-rotated quantization 

matrix Q*. That is, (C.11) is modified as 

                                                mask
Qq
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roundT

ij

ijij

ij ×
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
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⋅

×
=

*
ˆ ,                                    (C.12) 

where jiW ,  are the components of the weight matrix and should be ( )22 ji + according 

to (C.12). Considering that the quantized coefficients are scanned in a zigzag order, the 

coding can also be simplified by changing the weight matrix to the 8×8 zigzag index 

matrix 
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, 

where again high-frequency coefficients receive more weight than the low-frequency 

ones. The mask in (C.12) is two-fold: (1) used to further improve the efficiency of 

entropy coding (all-ones mask will simply do nothing); (2) combines noise tolerance and 

discrimination capability. Since the input image to be compressed contain noise (we use 

),( vuS to replace ),( vuR in (C.9)) and non-zero extremely high frequency components are 

usually just noise, keeping those frequency components will jeopardize the noise 

tolerance capability of the decompressed image. Therefore compression algorithm for PR 

should be bandpass in nature to combine noise tolerance and discrimination capability 

and should retain middle frequencies instead of extremely high frequencies during 

compression. In summary, a mask can be used to delete those nonzero extremely high- 

and low-frequency coefficients to improve coding efficiency and also remove noise. An 

example of such a mask is shown below: 
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, 

where only coefficients of middle frequencies from 16 to 39 are encoded. The mask 

could be determined either by optimizing some measure or by extensive experimentation. 

The latter was used in this paper. 

In the final stage of compression, the obtained quantized coefficients from (C. 11) are 

entropy-encoded. Since only middle-frequency (and some high-frequency) components 

are coded and they have much smaller magnitudes than low-frequency components, a 

higher compression ratio than the standard JPEG can be obtained. Although multiplying 

DCT coefficients with a weight matrix will increase the magnitudes of the quantized 

coefficients, this can be alleviated by increasing the corresponding quality factor. It is to 

be noted that the quality of an image in PR has a different meaning from the quality in 

human visualization. Therefore, the quality factors (C.12) and (C.2) are not the same. 

We can modify the wavelet-based image compression algorithms as well for PR in a 

similar way by emphasizing middle- to high-frequency components. The wavelet-based 

algorithms are based on the multiresolution decomposition of the image to be compressed. 

For visualization, the LL (low-frequency) band at the highest level is considered as most 

important, and the other bands, containing edge information, are classified as of minor 

importance, with the degree of importance decreasing from the top of the pyramid to the 
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bands at the bottom. As a result, a large number of bits are assigned to encode the LL 

band, and many coefficients at higher-frequency subbands (finer resolutions) are 

discarded. However, for pattern recognition, we know that edge information is more 

important. Accordingly, we suggest encoding the LH and HL bands and discarding the 

LL and HH bands. In this way, a much higher compression ratio can be obtained while 

simultaneously enhancing the discrimination performance. Wavelet denoising [7] can be 

applied to the wavelet coefficients to remove possible noise in the encoding process. 

 

C.4 Simulation Results 
 

 Computer simulations were performed to test the performance of the proposed 

algorithms. The input image used is an infrared image as shown in Fig. C.2, and the truck 

located at the left is used as the reference image. We compare the performance of the 

standard JPEG, the standard EZW, and the proposed modified JPEG and EZW. The input 

image is compressed using these four compression methods respectively, and then 

reconstructed and cross-correlated with the reference image. Figure C.3(a), C.3(b), C.3(c), 

and C.3(d) show, respectively, the reconstructed images from the standard JPEG (or 

EZW); the modified JPEG with q=1, weight matrix 22 ji + , an all-ones mask; the 

modified JPEG with q=1, the zigzag weight matrix, and the example mask; and the 

modified EZW algorithms. It is seen that the reconstructed image from the standard JPEG 

or EZW is almost identical to the original image, while in the reconstructed images from 

the modified algorithms, the middle and high frequency components are emphasized. 

Figure C.3(b), C.3(c), and C.3(d) will not be acceptable for visualization purposes, but 

they are good for pattern recognition. This can be seen from the normalized correlation 

results as shown in Figure C.4. Figure C.4(a) is the normalized correlation output with 
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the original image (without compression) and the reference. Figure C.4(b) shows the 

normalized correlation obtained with the decompressed image (using the standard JPEG 

or EZW compression) as the input image. Figure C.4(a) and C.4(b) are almost the same. 

The correlation profiles are broad, and there are a lot of sidelobes. 

                               
                                                  Figure C2. The input and reference images 

 

 
Figure C.3. Reconstructed image from (a) the standard JPEG or EZW compression, (b) the modified JPEG 

compression with the weight matrix 
22 ji +   and all-ones mask, (c) the modified JPEG compression 

with the zigzag weight matrix and the example mask, and (d) the modified EZW compression   

 

 
Figure C.4. Normalized correlation outputs of the reference and the input image processed (a) without 

compression, (b) with JPEG or EZW compression, (c) with the modified JPEG, and (d) with the modified 

EZW compression. 
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However, with the proposed modified JPEG and EZW compression, we can obtain a 

much sharper correlation peak, as shown in Figure C.4(c) and C.4(d), respectively. For 

the compression ratio, the standard JPEG baseline and the modified JPEG with the zigzag 

weight matrix are 30:1 and 73.5:1, respectively whereas the standard EZW and the 

modified EZW have compression ratios of 533:1 and 624:1, respectively. 

                                  
                                                  Figure C.5: Compression ratio versus quality factor 

 

The compression ratio of the modified JPEG algorithm depends on the quality factor, 

the weight matrix, and the shape of the mask. Figure C.5 illustrates the relationship 

between q-factor and compression ratio when the zigzag weight matrix and the example 

mask shown in C.3 are used. Figures C.6 and C.7 show the reconstructed images and 

correlation distributions using the modified JPEG when the quality factor is 12 

(compression ratio 117:1) and 35 (compression ratio 820:1), respectively. It is seen that 

we can still get sharp correlation peaks at high compression ratio. The quality of the 

decompressed image is degraded significantly as the compression ratio increases. The 

edges of the two other smaller vehicles (car and tank) are almost lost in Figure C.7 due to 

the extremely high compression ratio. Low contrast and small spatial support are other 
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reasons for losing edges. No compression method can be guaranteed to work for all 

objects with a high compression ratio. 

                 
                           Figure C.6: Reconstructed image and correlation output when q=12. 

 

                    
                                Figure C.7: Reconstructed image and correlation output when q=35. 

 

        Next, white Gaussian noise was added to the input image as shown in Figure C.8 (a) 

to test the noise performance of the proposed methods. The noise has zero mean and a 

standard deviation of 20. The normalized correlation distributions of the reference and 

the noisy input processed with the modified JPEG (with q=12) and the modified EZW, 

are obtained as shown in Figure C.8 (b) and C.8 (c), respectively. It is seen that they can 

tolerate additive noise. When the noise becomes heavy, the performance of the modified 

JPEG degrades faster than that of the modified EZW. From the results obtained, the 

modified EZW has the best performance, considering the compression ratio, correlation 

output, and noise tolerance. This is partially because the modified EZW has better 
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denoising and edge enhancement capabilities than the modified JPEG. In the modified 

JPEG, denoising and edge enhancement are simply performed by discarding low and 

extremely high frequencies. This approach should be improved in the future. The 

modified JPEG, however, has a lower computationally complexity. 

Figure C.8: (a) the noisy input image; (b) normalized correlation outputs of the reference and (a) with the 

modified JPEG; (c) normalized correlation outputs of the reference and (a) with the modified EZW. 
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APPENDIX D 
 

Symmetric Indexing 
 

In the examples in Sections IV-A and IV-B we used a symmetric indexing of the data 

of which we assess the Fisher information: for TDOA estimation we symmetrically index 

the DFT coefficients in (3.26) and for FDOA estimation we symmetrically index the 

samples in (3.33).  Why do we choose these seemingly arbitrary indexing schemes?  

Fundamentally, the choice of which sample or DFT coefficient we index as zero is an 

arbitrary one that arises in the mathematical analysis; thus, such an arbitrary naming 

should have no effect on the amount of Fisher information is available in from the data.  

However, for some problems the choice of the data indexing can influence the form of 

the Fisher information.  For example, in the FDOA problem, if instead of the indexing 

used in (3.33) we changed the indexing of the signal samples to  
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then the total Fisher information can be made arbitrarily large by increasing the value of 

|no|. This motivates choosing the smallest possible value of |no|, or no = 0.  In other words, 

the indexing should be symmetric in the TDOA and FDOA problems.  In other problems 

similar attention should be paid to the impact of the indexing on the Fisher information. 
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APENDIX E 
 

E.1. Correlated TDOA/FDOA Estimates 

In this section, we will shows that it is indeed possible to occur that the TDOA/FDOA 

estimates are correlated. Let the received C-T signal be )()()( twetstr
tj ++= ντ so that after 

sampling we have 

)()(][ nTwenTsnr
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→
44 344 21

s

ντ
                                                 (E.1) 

where the arrow notation means that samples of the indicated signal go into a signal 

vector called s.  Then the partial derivatives of this signal vector w.r.t. the TDOA/FDOA 

parameters are given by 
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The diagonal elements of the FIM are given by 
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The off-diagonal elements of the FIM are given by 
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with J21 = J12. Let the signal be a general complex equivalent lowpass signal; then it has 

the general form of 

)()()( τφττ ++=+ nTj
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Now using (E.8) in (E.6) gives 
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Now clearly this doesn’t go to zero in general, although there may be some special 

cases [86].   

E.2. FIM for TDOA/FDOA of a Chirp Signal  

Let the signal be a complex linear chirp signal given by 

2)2/()( tjj
eets

αφ=                                                            (E.10) 

so that we get 
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or in matrix form 
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      In the following simulation of testing if we could apply equations (4.30), (4.31) and 

(4.37) by using PR filter bank and the short-time Fourier transform (STFT) to 

numerically compute the FIM elements and then compare the result to the analytically 

derived theoretical result for the linear chirp signal. Because vvJ  in (E.12) is a constant 

with respect to the sweep rate of the chirp signalα , so α, so we can look at the other 

terms relative to this term:  J11 / J22 = α
2
 and J12 / J22 = α.  Plots of the numerical and 

theoretical results for the case of using a complex filter bank and STFT are shown in 

Figure E.1 and Figure E.2 respectively.  
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Figure E.1: Quality of numerical evaluation of FIM via complex filter bank 
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Figure E.2 : Quality of numerical evaluation of FIM via STFT. 
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Appendix F: 

Complex PR Filter Banks 

A. Introduction 

Let {g0[n] , g1[n], h0[n], h1[n]} be a set of N-order FIR filters that lead to a perfect 

reconstruction (PR) filter bank arising from a tree cascade structure; the gi[n] are the analysis 

filters and the hi[n] are the synthesis filters.   For this analysis we will assume a “full tree” 

decomposition; a four-channel example of the analysis bank is shown in Figure F.1 and the 

corresponding synthesis bank is shown in Figure F.2. 

In this example we have assumed that the analysis filters g0[n] and g1[n] are chosen to be 

half-band lowpass and half-band highpass, respectively, as is typical and virtually universal in the 

literature.  As a result of this choice, note that the channel frequency responses shown in Figure 

F.1 are “two sided,” in that each channel passes both positive and negative frequencies.   

In many applications it is desirable to have so-called one-sided channels.  Although there are 

known methods for the direct design and implementation of such filters (e.g., DFT-based filter 

banks and polyphase filter banks), tree-based methods for one-sided filter banks seem to be 

relatively unknown.  Because there are times when a tree-based approach is desirable for one-

sided filter banks it is worthwhile to address a simple trick that allows conversion of any two-

sided tree-based PR filter bank into a one-sided tree-based PR.  This then brings to bear on the 

one-sided problem a huge body of literature devoted to the two-sided problem. 

B. Channel Response Analysis for Two-Sided Filter Banks 

To aid our later analysis we will analyze this 4-channel filter bank to verify that it provides 

the kind of channel responses shown in Figure F.1.   The easiest way to do this is to use the 

decimation identity to move the “inside” decimators to the output side, then find the four 

channel’s outputs before decimation, then impart the effect of the 4x decimation.  The decimation 
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Figure F.1: Example of a four-channel, full-tree cascaded analysis filter bank 
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Figure F.2 : Example of a four-channel, full-tree cascaded synthesis filter bank 

 

identity says that a 2x decimator followed by some H(z) can be replaced by H(z
2
) followed by 2x 

decimation.  Furthermore, we know that if transfer function H(z) gives frequency response H(θ) 

then transfer function H(z
2
) gives frequency response H(2θ).  Thus, the two-stage cascade for the 

four-channel analysis filter can be replaced by the system in Figure F.3 and then that in Figure 

F.4. 
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Figure F.5 shows the four ideal filters needed for the analysis: G0(θ) and G1(θ) in the first stage 

and G0(2θ) and G1(2θ) in the second stage (assuming the decimation moved to the output side).  

Figure F.6 shows the pairs of cascaded filter responses superimposed on top of each other and 

Figure F.7 shows the result of multiplying each pair of cascaded filter responses to get the 

channel responses– note that each channel has a (positive side) passband width of π/4 rad/second 

and that the responses do not overlap but seamlessly cover the whole frequency range.  Figure F.8 

shows the effect of each channel on the input DTFT and gives the output DTFT before any 

decimation – note that each channel’s output is a perfect slice of the input with nothing existing 

outside the channel’s ideal range.  

 Figure F. 9 through Figure F.12 shows the effect of decimation on the output DTFT of each 

channel – notice that there is no overlap between the replica components that are present due to 

decimation and therefore there is no aliasing.  Finally,  Figure F. 13 shows the outputs after 

decimation – since there is no aliasing the shapes of these look just like those shown for the pre- 

decimation channel outputs in Figure F.8, except that the decimation has stretched them to be 

“full band” and has flipped them left-right for channels 2 and 3. 

 

                 

G0(θ)

G1(θ)

G0(2θ)

G1(2θ)

G0(2θ)

G1(2θ)

↓4

↓4

↓4

↓4

  

Figure F.3: Equivalent filter bank with decimators moved 
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G0(θ) G0(2θ) ↓4

↓4

↓4

↓4

G0(θ) G1(2θ)

G1(θ) G0(2θ)

G1(θ) G1(2θ)

 

Figure F. 4: Equivalent filter bank with decimators moved and blocks combined 

 

π 2π 3π 4π–π–2π–3π–4π θ

G0(θ)

π 2π 3π 4π–π–2π–3π–4π θ

G1(θ)

π 2π 3π 4π–π–2π–3π–4π θ

G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G1(2θ)

 

Figure F. 5: Ideal filters for the various stages (w/ decimation moved to end) 
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π 2π 3π 4π–π–2π–3π–4π θ

G0(θ) & G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G0(θ) & G1(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G1(θ) & G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G1(θ) & G1(2θ)

 

Figure F. 6 : Shows pairs of filters that appear in the four different cascades that form the four channels 

 

π 2π 3π 4π–π–2π–3π–4π θ

H1(θ) = G0(θ)G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

H2(θ) = G0(θ)G1(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

H3(θ) = G1(θ)G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

H4(θ) = G1(θ)G1(2θ)

 

Figure F.7: Four channels' frequency response (w/ decimation moved to end) 

 



 172 

π–π θ

θ

Y1(θ)

π/4 π/2 3π/4–π/4–3π/4 –π/2

π–π π/4–π/4

θπ–π π/4 π/2–π/4–π/2

Y2(θ)

H1(θ) H2(θ) H4(θ) H3(θ)

θ

Y4(θ)

θ

Y3(θ)

π/2 3π/4–3π/4 –π/2

3π/4–3π/4 π–π
 

Figure F. 8 : The four channels and how they split up the input DTFT 

 

θ

Y1(θ)

π–π
π/4–π/4

2π–2π

θ

Y1(θ/4)

π–π 2π–2π

θ

Y1((θ-2π)/4)

π–π 2π–2π

8π–8π

θ

Y1((θ-4π)/4)

π–π 2π–2π

Note: No 

Aliasing!

θ

Y1((θ-6π)/4)

π–π 2π–2π
 

Figure F.9 : Channel 1 after decimation  - shows all the streched spectral replicas that arise from decimation 
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θπ–π

Y2(θ)

2π–2π

θπ–π

Y2(θ/4)

2π–2π

θπ–π

Y2((θ-2π)/4)

2π–2π

θπ–π

Y2((θ-4π)/4)

2π–2π

θπ–π

Y2((θ-6π)/4)

2π–2π

Note: No 

Aliasing!

Note: No 

Aliasing!

 

Figure F. 10 : Channel 2 after decimation  - shows all the stretched spectral replicas that arise from 

decimation 

 

θ

Y4(θ)

π–π 2π–2π

θ

Y4(θ/4)

π–π 2π–2π

θ

Y4((θ-2π)/4)

π–π 2π–2π

θ

Y4((θ-4π)/4)

π–π 2π–2π

θ

Y4((θ-6π)/4)

π–π 2π–2π

Note: No 

Aliasing!

Note: No 

Aliasing!

 

Figure F. 11: Channel 4 after decimation  - shows all the stretched spectral replicas that arise from 

decimation 
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θ

Y3(θ)

π–π 2π–2π

θ

Y3(θ/4)

π–π 2π–2π 4π–4π

θ

Y3((θ-2π)/4)

π–π 2π–2π 4π–4π

θ

Y3((θ-4π)/4)

π–π 2π–2π 4π–4π

θ

Y3((θ-6π)/4)

π–π 2π–2π 4π–4π

Note: No 

Aliasing!

Note: No 

Aliasing!

 

Figure F. 12: Channel 3 after decimation  - shows all the stretched spectral replicas that arise from 

decimation 

 

Y1_dec(θ)

π–π θ

Y2_dec(θ)

π–π θ

Y4_dec(θ)

π–π θ

Y3_dec(θ)

π–π θ

 

Figure F.13: Channel output DTFT’s  after decimation  - only shows standard –π to π range 

 



 175 

C. Background: Standard Conditions For PR 

First some preliminaries on the conditions used to achieve PR in the two-sided filter banks.  

The order N of the FIR filters must be odd (and therefore the length L = N+1 is even).  

Cancellation of aliasing is ensured when the synthesis filters are related to the analysis filters 

according to 

)()(

)()(

01

10

zGzH

zGzH

−−=

−=

                                                          (F.1) 

which in the time domain becomes 

Nnngnh

Nnngnh

n

n

,,2,1,0],[)1(][

,,2,1,0],[)1(][

01

10

K

K

=−−=

=−=

                                              (F.2) 

With aliasing cancelled through this relationship between the synthesis filters and the analysis 

filters, the transfer function from input on the analysis side to the output on the synthesis side 

becomes 

)()()()()( 1010 zGzGzGzGzT −−−= .                                                   (F.3) 

The following relationship between the two analysis filters is imposed to help enforce the PR 

condition: 

)()()( 1
01

−− −−= zGzzG N
                                                          (F.4) 

which in the time domain is equivalent to 

NnnNgng n ,,2,1,0],[)1(][ 01 K=−−=                                    (F.5) 

which turns  (F.2) into  
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                                      (F.6) 
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Substitution of (F.4) into (F.3) leads to  

)]()()()([)( 1
00

1
00

−−− −−−= zGzGzGzGzzT N
.                         (F.7) 

and thus a sufficient condition for perfect reconstruction is 

1)()(
2

0

2

0 =−+ πθθ GG ,                                     (F.8) 

where )(0 θG  is the frequency response of the filter; in the time domain this condition is 

equivalent to  

][]2[],[ 00 kkngng δ=+ ,                                                       (F.9) 

which means that the filter g0[n] is orthogonal to its even-integer translates.  Thus, a set of filters 

designed to satisfy (F.5)–(F.9) will lead to a two-sided PR filter bank.  The typical approach is to 

design a half-band lowpass filter g0[n] that satisfies (F.8) and (F.9) and then determine the other 

three filters from (F.5) and (F.6).   The relationships in (F.5) and (F.6) constitute a strict linkage 

between the four filters in the filter banks.  The equations given in (F.5) and (F.6) show how to 

get the other three filters once you have g0[n]; similarly, given any one of the four filters it is 

possible to get the other three using similar relationships; these relationships are summarized in 

Figure F.14, where the solid line connections correspond to (F.5) and (F.6) and the dashed line 

connections can be derived from them. 

When the filter g0[n] is chosen to be a half-band lowpass filter, then g1[n] will become a half-

band highpass filter, as imposed by (F.5); and it is that structure that leads to the standard two-

sided filter bank.  Thus, to get a one-sided filter bank it seems that we may simply need to chose 

g0[n] in a slightly different way.  As shown in the next subsection, if we first choose g0[n] to be a 

complex half-band filter that satisfies (F.8) then we can get the desired complex one-sided filter 

bank through a similar set of relationships as (F.5) and (F.6). 
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g0[n] h0[n]

g1[n] h1[n]

Reverse

Reverse

Reverse

& Mod

Reverse

& Mod

Mod

Neg & Mod

 

Figure F. 14 : Relationships between the filters for real PR filter banks. 

 

D. One-Sided Filter Banks 

We consider the same structure as in Figure F.1, but with a different choice for gi[n] than was 

made above.  To aid in seeing the structure we will analyze the structure using ideal filters in the 

same that was done in Subsection C of this appendix.  Let }][
~

],[
~

],[~],[~{ 1010 nhnhngng  be the 

filters that give rise to the desired complex one-sided filter bank.  Choose ][~
0 ng  to be a positive-

band filter (i.e., a half-band filter that covers the positive frequencies); this can be easily done by 

choosing  

][][~
0

)2/(
0 ngeng nj π= ,                                                        (F.10) 

which is just a modulation up by π/2 rad/sample of g0[n], a standard half-band lowpass filter for a 

two-sided filter bank.  Now to get the corresponding negative-band filter, (F.5) states that we 

should use 

][~)1(][~
0

?

1 nNgng n −−=                                                           (F.11) 

where the question mark above the equal sign shows our uncertainty if this result still holds.  A 

quick numerical test of this idea shows that, in fact, (F.11) does NOT give a negative-frequency 

band filter!  Why is that?  Why did it work for the real filter case?  Well, for the real filter case 
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the time reversal does not change the magnitude of the frequency response and then the 

modulation converts this into a highpass filter.  However, for a complex filter the time reversal 

DOES change the magnitude of the frequency response; it changes it into a negative-band filter!  

So maybe we could just do the time reversal of (F.11) to get the desired negative-band filter; but 

that would provide us with a theory for the complex case that does NOT naturally degenerate to 

the known real-valued theory.   

To find the answer we have to look at (F.4), which is the truer starting point than (F.5).  The 

inverse-z in (F.4) (which is responsible for the time reversal) causes the filter transfer function 

zeros to move as show in Figure F.15; for real filters the zeros must appear in conjugate pairs and 

they then move into conjugate pairs.  Half-band lowpass filters will have zeros along the left-had 

side of the unit circle and the inverse-z mapping will keep them on that side; thus, they remain 

half-band lowpass filters after time reversal.  However, for half-band positive-pass filters a zero 

on the negative frequency side of the unit circle will get mapped into the positive frequency side 

(which is not what we want).  But… conjugating the filter coefficients and doing a time reversal 

will leave them on the negative frequency side as shown in Figure F.16.  Note that this operation 

will naturally degenerate to the known real-valued theory. 

 Thus, we have demonstrated that a time reversal and coefficient conjugation is the mapping 

needed to get the negative-band filter from the positive band filter; thus, (F.11) should be changed 

to   

][~)1(][~ *
01 nNgng n −−= ,                                                          (F.12) 

which now covers the negative frequency band.  This is shown in Figure F.17. 

 If we now walk our way through the equivalent four-channel cascade with the decimators 

moved to the end we will see what kind of analysis bank this choice of filters will give.   The 

plots in Figure F.17 show the interaction between the two filters in each channel.  The plots in 

Figure F.18 show the frequency response magnitudes for each of the four filter bank channels.  
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Figure F.19 shows the four channels side by side, where the filter responses are shown as 

trapezoids to enable on to easily see the different channels. From this is it is clear that this 

arrangement gives us the desired one-sided channel frequency responses.   But… it is important 

to note that the frequency ordering of the channels can be counter-intuitive (e.g., note in Figure 

F.19 that  the response of |G1(θ)| |G1(2θ)| does not give the most negative frequency channel as 

one might expect). 

 The diagram in Figure F.20 shows the modifications made to the relationships in Figure F.14 

to handle the complex filter case.  Note that the diagonal relationships that ensure aliasing 

cancellation are the same.  Thus, all we have to ensure is that by choosing according to (F.12) still 

ensures PR when g0[n] is a standard real-valued PR lowpass filter. 

 

Re{z}

Im{z}

 

Figure F. 15: Movement of real filter zeros under z → z
-1
. 
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Re{z}

Im{z}

 

Figure F.16 : Movement of complex filter zeros under coefficient conjugation and z → z
-1
; the first move to 

the gray star location is due to the z → z
-1 

and the second move is due to coefficient conjugation. 

 

 

π 2π 3π 4π–π–2π–3π–4π θ
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Figure F.16 : Ideal Filters for the first stage of the one-sided filter bank 
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π 2π 3π 4π–π–2π–3π–4π θ

G0(θ) & G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G0(θ) & G1(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G1(θ) & G0(2θ)

π 2π 3π 4π–π–2π–3π–4π θ

G1(θ) & G1(2θ)

 

Figure F.17: Shows pairs of filters that appear in the four different cascades that form the four channels 

 

π 2π 3π 4π–π–2π–3π–4π θ

|H1(θ)| = |G0(θ)| |G0(2θ)|

|H2(θ)| = |G0(θ)| |G1(2θ)|

|H3(θ)| = |G1(θ)| |G0(2θ)|

|H4(θ)| = |G1(θ)| |G1(2θ)|

π 2π 3π 4π–π–2π–3π–4π θ

π 2π 3π 4π–π–2π–3π–4π θ

π 2π 3π 4π–π–2π–3π–4π θ

 

Figure F. 18 : Four Channels' frequency response (w/ decimation moved to end) 
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π–π θ

|G0(θ)| |G0(2θ)|

|G0(θ)| |G1(2θ)||G1(θ)| |G0(2θ)|

|G1(θ)| |G1(2θ)|

 

Figure F.19: One-Sided filter bank’s frequency responses (w/ decimation moved to end) 
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Figure F.20: Relationships between the filters for complex PR filter banks. 

 
One question remains:  Do we still get perfect reconstruction from this scheme?  The answer 

is yes, as long as the original two-sided g0[n] leads to a perfect reconstruction filter bank.  That 

this is true follows easily.   

Let ][~][ˆ *
00 ngng =  .  Then  (F.12) becomes 

)(ˆ)()(
~ 1

01
−− −−= zGzzG N

                                                          (F.13) 

and total transfer function in (F.3) becomes 
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which after substituting (F.13) becomes 
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where the part in front of the brackets is a pure delay needed for causality.  To get PR we need the 

frequency response of the part in the brackets to be constant over frequency.  To check this we 

have 
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where the conjugated terms in bottom of (F.16) come from 
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Then the bottom of  (F.16) becomes 
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That this is true whenever the original filter satisfies (F.8) follows from 
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where we have used a change of variables. 
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