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Abstract 

 

 The location of radar emitters has been an important research topic for the 

military, for law enforcement and rescue operations. The characteristics of an emitted 

radar signal once received by several receivers can be exploited to locate the emitter. 

Two of these characteristics are: (1) the differences in Doppler shift in the signal’s 

frequency and (2) the difference in the time that the emitted signal arrived at the sensors. 

These measurements are known as Frequency Difference of Arrival (FDOA) and Time 

Difference of Arrival (TDOA). While TDOA and FDOA information is sufficient to 

solve for the location of a radar emitter, the multipath effect obscures the accuracy of the 

location. A multipath transmission occurs when a transmitted signal arrives at the 

receiver by two or more paths of different delay and amplitude attenuation. For example, 

the signal can be received by direct path between emitter and receiver and also by 

reflections from other objects, such as mountains, buildings and so on. In this case, the 

emitted signal will arrive at the receiver in the form of a direct path signal plus various 

reflections with various delays. The undesired multipath effect should be corrected before 

the use of TDOA and FDOA. The problem can be solved by first identifying the channel 

and then from the channel estimate, single out the direct path signal. Unfortunately, a 

training sequence based channel identification algorithm cannot be used in this case since 

no training signal is available in trying to locate the emitter. As a result, there is a strong 

need for a special kind of channel identification algorithm, known as blind channel 

identification, that do not require the transmission of a training sequence. There are many 

existing blind channel identifications that are based on channel outputs and knowledge of 



the probabilistic model of channel input. In the situation of emitter’s location, the input 

statistical model may not be known, or there may not be sufficient data to obtain an 

accurate estimate of the statistics. In this paper, a deterministic Least Square approach is 

studied and computer simulations are used to demonstrate the potential of the proposed 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

Background 

 

 In the emitter location problem, the time-difference-of-arrival (TDOA) and the 

frequency-difference-of-arrival (FDOA) are often used to locate the electromagnetic 

emitters. The following diagram describes a system with one ground-based emitter at an 

unknown remote location and three receivers mounted on aircraft. The three receivers 

receive the emitted pulse trains to estimate the emitter location. 
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dependent on time. Since the emitter is assumed to be fixed, the times t1 and t2 become 

directly proportional to R1 and R2. That is 

11 kRt =  
    22 kRt =          (1.1) 

 

which implies that 

)(* 2121 RRkttTDOA −=−= .       (1.2) 

From this equation, the emitter should be located on the locus of a hyperbola, where the 

TDOA is a constant. In other words, the emitter should lie on the hyperboloid surface 

where receiver 1 and receiver 2 are the foci. Since the location of the emitter is 3-D, the 

TDOA between receiver 1, receiver 2 and receiver 3 cannot provide us the exact location 

of the radar emitter. One can either add another receiver to the system or exploit the 

FDOA of the system to locate the emitter. Due to the Doppler shift in the system, the 

center frequency of the received signal is different from the center frequency of the 

transmitted signal. For example, if the center frequency at receiver 1 and receiver 2 are f1 

and f2 respectively, then FDOA of the system is defined as 

21 ffFDOA −=         (1.3) 

Once the TDOA and the FDOA estimates are calculated, the emitter location can be 

found. The concept of ambiguity function is often used to estimate the TDOA and FDOA 

of such system. 

 The ambiguity function is a time-frequency correlation function and is useful in 

the emitter location problem. The cross-ambiguity function (an ambiguity function 

between two different received signals) represents the energy in two different received 



signals as a function of time delay and Doppler shift. Let s1(t) and s2(t) be the two signals 

from two different receivers, then the cross-ambiguity function is defined as 

∫
∞

∞−

−−= dtetstsC tjωττω )()(),( *
2112 ,        (1.4) 

where ω and τ represent various time delay and Doppler shift. If the two receivers are 

also fixed or FDOA = 0, then the cross-ambiguity function becomes 

∫
∞
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−= dttstsC )()()( *
2112 ττ ,        (1.5) 

which is a function of time delay τ alone. This is the only case (FDOA = 0) will be 

considered here. 

 A multipath transmission takes place when a transmitted signal arrives at the 

receiver by two or more paths of different delays. For example, in this system, the signal 

can be received by direct path between the emitter and the receiver and also by 

reflections from other objects, such as mountains, buildings and so on. In this case, the 

received signal can be represented as the sum of several signals with different attenuation 

and different time delay. That is, 
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)()( τ ,         (1.6) 

where hk represents the different attenuations and τk represents the different time delays 

of the original signal s(t). Again, the received signal consists of multiple versions of the 

original signal.   

 The presence of multipath raises practical difficulties in the use of the ambiguity 

function to estimate the TDOA and the FDOA between receivers. Since the direct path 

signal is obscured by the reflections, we can no longer use the TDOA and the FDOA of 



the receiving signal to estimate the exact location of the emitter. For example, substitute 

equation (1.6) into (1.5), the cross-ambiguity function become 
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where kllk ττ −=∆  and )(τssc is the autocorrelation function of the emitted signal s(t). 

Also, note that equation (1.7) describes the case where FDOA is equal to zero. The 

following diagram illustrates how the c )( lkss ∆−τ terms interfere with each other  
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By identifying the channel impulse response, the non-direct paths can be equalized or 

eliminated. 



Traditionally, a training sequence can be used to identify the channel impulse 

response and further recover the direct path signal. The effects of multipath can be 

modeled as a channel input passing through a finite impulse response channel: 
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inxihnx

0
][][][              (1.8) 

where L is the order of the channel. The direct path signal can be recovered by 

eliminating all the channel coefficients corresponded to the non-direct path component in 

equation (1.7). However, in our case, there will be no training sequence available to the 

receivers for channel identification. In this situation, blind channel identification, a more 

sophisticated identification algorithm, is needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Theory 
 

Blind Channel Equalization has become an important research topic in digital 

communication systems since the first published work by Y. Sato [1] in 1975. Channel 

equalizers and identifiers have played an important role in digital communication systems 

for decades. There do exist many different methods for implementing an optimal and 

efficient channel equalizers. Since many digital communication systems are often 

constrained by limited bandwidth, it is desirable to construct the channel equalizers 

without consuming excessive channel bandwidth. By eliminating training data in the 

more traditional approach of equalization, blind channel equalizations presents a 

bandwidth efficient solution to these equalization and identification problems. Also, there 

is practical need for many digital communication receivers (for example in HDTV and 

radar emitter location problem) to equalize unknown channels without the knowledge of 

the training sequences. 

Blind equalization is a process during which one can recover an unknown input 

data sequence from the system output without the knowledge of the channel. One can 

immediately realize that this is a more challenging problem than the traditional 

equalization approach (with the training sequence). The problem of channel identification 

is almost identical to that of channel equalization. Given the input and output signal of a 

communication system, the parameters of this communication system can be uniquely 

identified if the input signal is continuously exciting. After the channel is identified, an 

optimal channel equalizer can be built accordingly. 

 



 Digital communication requires that digital signals be transmitted over some 

specific medium (channel) between the transmitter and the receiver. Analog media such 

as radio channel and telephone cables usually impart various types of distortion to the 

transmitted signal. Limited channel bandwidth, multipath and fading are the major types 

of these channel distortion. For most channels, channel equalizer can be used to remove 

or compensate these unwanted distortions. Traditionally, one can estimate and/or 

compensate the channel by sending a sequence of known training data through the 

channel [2]. This approach is considered impractical in situation like electronic warfare. 

Blind channel equalization presents a more realistic solution to channel equalization in 

these situations. This paper is dedicated to introduce how to apply the Least-Square 

approach to blind channel identification and equalization in the emitter location problem. 

Major signals in digital communication system have a broad spectrum with a 

significant amount of low-frequency content. Transmission of these signals therefore 

requires an ideal analog channel. Typically, however, the channel is dispersive in that its 

impulse response deviates from the ideal. The problem of channel equalization can be 

addressed [6] using the system configuration shown below 
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and the receiver (including matched filter) at baseband. x(t) is the LTI channel output (or 

the matched filter output) and can be written as 

∑
∞

−∞=
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k

twtkTthkstx )()(][)( 0        (2.1) 

Note that w(t) is the AWGN added to the system and t0 represents the arbitrary delay. The 

matched filter output is then sampled and written as 
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The baud rate sampled input and output relationship can be written in discrete form as 
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The sampled channel is distortionless and ideal if 
 

][][][ vivhih −= δ         (2.4) 
 
where v represents certain amount of time delay. The ideal channel output would be 
 

][][][ vksvhkx −= .        (2.5) 
 
When the channel is dispersive, h[i] is nonzero at more than one instance. The result of 

signal transmission over such a channel is that the channel output x[k] depends on 

multiple symbols in {s[k]}. This interference, referred to as inter-symbol interference 

(ISI), is a major source of errors in the process of reconstructing our input sequence 

{s[k]}. As we can see from above mathematical model, ISI caused by multipath in 

bandlimited (frequency selective) time dispersive channels distorts the transmitted signal. 

ISI is one of the major obstacles to reliable high-speed signal transmission over a 

dispersive channel. Channel equalization is referred to the signal processing that removes 

or reduces ISI. 



Channel equalization can be partitioned into two broad categories [5]: Maximum-

Likelihood Sequence Estimation (MLSE) and equalization with filters. One can further 

partition the latter category into different subcategories. The filters can be either linear or 

non-linear. They can be grouped according to their ability to adapt in a time-varying 

environment. Also, they can be described corresponding to the sampling rate at the 

matched filter output, which may be either symbol spaced or fractionally spaced. 

 Let’s first discuss how to accomplish channel equalization with a linear filter. 

These approaches rely on finding a near-ideal filter, which will reverse channel 

distortion. In most communication systems, the baud-rate sampled matched filter output 

x[k] can be written as 

∑
∞

−∞=

+−=
i

kwiksihkx ][][][][         (2.6) 

Again, when the channel is NOT distortionless, its impulse response h[k] can make the 

output x[k] depend on more than one element of {s[k]}. Limited channel bandwidth, 

multi-path, and channel fading are three of the major causes of ISI in digital 

communication systems. The task of equalization with linear filters can be translated to 

the problem of channel identification. The channel in z-transform notation is defined as 

∑
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After the discrete channel H(z) is identified, the equalizer Gmmse(z,θ) can be built (see fig 

below) according to some special criteria such as minimum mean square error (MMSE) 

criterion and zero-forcing criterion. 
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The purpose for this equalizer is to generate y[k] such that after the decision device 

][][ vksks −=
∧

 .        (2.8) 

This expression describes the desired channel-equalizer response to be a v-sample delay 

of the original signal with zero ISI. In MMSE, parameter vector θ of the equalizer G(z,θ) 

is selected in order to minimize the mean square error criterion between s[k-v] and y[k] 

and equalizer can be written in z-transform [3] as 
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where * denotes the complex conjugate and Sw(f) represents the power spectrum density 

of w[k]. On the other hand, if the zero-forcing criterion is used, then the equalizer transfer 

function [3] becomes 
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zf

−

=θ .      (2.10) 

Note that H(z) is needed in either case to construct the equalizers. Also, from equation 

(3.10), one should conclude that zero-forcing equalizer tends to perform badly when H(z) 

has zeros near the unit circle and when the signal to noise ratio is low.  

In the linear equalizer describes above, the equalizer samples are assumed to be 

spaced at the reciprocal of the baud rate. This spacing is optimum if the matched filter 

before the equalizer is matched to the channel distorted transmitted pulse. Unfortunately, 

in most practical systems, the receiver filter is matched to the transmitted signal pulse 

instead and the sampling time is optimized for this suboptimum filter. This approach 



makes the equalizer very sensitive to the choice of sampling time. In contrast to the 

symbol rate equalizer, a fractionally spaced equalizer can be shown [3] to be an effective 

way to mitigate the timing difficulty. Another advantage of the FSE is that signal 

transmission may begin with an arbitrary sampling phase. The detailed proof of the above 

statements is beyond the scope of this paper. However, the application of fractionally 

spaced equalizer (FSE) is essential to the study of blind channel equalization using only 

second-order statistics. So this paper will introduce the framework of the FSE in this 

section. 

A fractionally spaced equalizer (FSE) is obtained by sampling the channel output 

at a rate faster than the symbol rate. Let p be an integer and ∆ be the new sampling rate, 

where ∆ = T/p. Now rewrite the channel output as 
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Now divide the oversampled channel output x(k∆) into p linearly-independent 

subchannels. 
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Also, express each subchannel transfer function as 
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and 
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are the impulse response and noise for each subchannel respectively. The p subchannel 

outputs become 
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Thus, the p different subchannels can be interpreted [6] as p discrete FIR channels with a 

common input s[k] as shown below 
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From the figure above, for each subchannel output xi[k],

equalizer filter Fi(z). In fact, the FSE equalizer in this case is a
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Then, the output of these p different filters are summed to form
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 there is a corresponding 

 vector of filters 

.      (2.17) 

 the equalizer output 

    (2.18) 



As mention above, with the training sequence, FSE has the advantage of suppressing 

timing errors. Also, FSE can achieve zero-forcing criterion without amplifying the 

channel noise. That is 
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Also, this multiple channel view leads itself nicely and naturally to the emitter location 

problem. Since the emitter signal is intercepted by multiple receivers, in that case, each 

subchannel in the FSE is the physical channel between the emitter and the receiver 

intercepting the signal. 

When the channel distortion is too severe for a linear equalizer to handle, 

nonlinear equalizers are used. Linear equalizer does not perform well on channels having 

spectral nulls. Such channels are often encountered in wireless communication systems. 

Sometime linear equalizer put too much gain in the vicinity of the spectral null, thereby 

enhancing the noise present in those frequencies. A decision feedback equalizer (DFE) is 

a nonlinear equalizer that uses previous detector decisions to remove the ISI on pulses 

that are currently being demodulated [3]. Its structure is shown below  
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The basic theory behind DFE is that if the symbols previously detected are 

assumed to be correct, then the ISI produced by these symbols can be eliminated at the 

output of the forward filter by subtracting past symbol values with appropriate weighting 



in the feedback filter. The forward and feedback filter can be attuned at the same time to 

satisfy certain criterion such as MMSE. As shown in [6], forward filter in this structure 

can be either symbol-spaced equalizer or FSE. The presence of the feedback filter makes 

DFE a nonlinear device. In fact, the major drawback of DFE is error propagation through 

this feedback filter. In some extreme situation, the error propagation will lead to a system 

breakdown. 

In the development of the equalization methods above, we implicitly assumed that 

either the impulse response or the frequency response of the channel is time-invariant. 

However, in many cases, the equalizer has to deal with a time-varying channel. In these 

cases, the equalizer is designed to be adaptive to the time-varying channel. The 

adaptation may be initialized by minimizing the error between the desired (from the 

training sequence) outputs and the actual equalizer outputs. Then, the adaptation 

continues by minimizing the error between the decision device output and the equalizer 

outputs. The following diagram illustrates this criterion  
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From the diagram, the error is defined as 

][][][ orkykake −=
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depends on the position of the connection (position 1 or position 2). The error e[k] is used 

to estimate the direction in which the filter should be adjusted [2]. There are two different 

modes of operation in the adaptive equalizer: training mode (position 1) and decision-

directed mode (position 2). During the training mode, a known training sequence is 

compared to the actual equalizer output to form the error signal. Then, by adjusting the 

equalizer’s parameters, the mean square symbol error is minimized. After the equalizer’s 

parameters reaches its optimum values, the equalizer switches to its decision-directed 

mode. In the decision-directed mode, the decision device output s[k-v] can be used in 

place of training sequence to form the error signal and continue to track slow channel 

variations. 

 The use of a linear filter as an equalizer relies purely on the ability of the linear 

filter to reverse the channel distortion. The major drawback is that the sampled discrete 

channel must satisfy some strong condition in order to be compensated by linear 

equalizer. For baud-rate sampled channel outputs, the channel must have a stable inverse, 

namely, it must be of minimum phase. For fractionally sampled channel output, all 

subchannels must not share any common non-minimum phase zeros in order for a stable 

channel inverse to exist. 

 Also, these channel equalization approaches are followed by a symbol-by-symbol 

memoryless decision device, which does not take into consideration the fact that post-

equalization noise is no longer white. Thus, a symbol-by-symbol decision ignores the 

noise correlation, and performance loss is often encountered in feed-forward and 

feedback equalizer. A better but more computational complex method is the use of 



Maximum-Likelihood Sequence Estimation (MLSE). MLSE is what should be discussed 

next. 

Assume that the channel has finite impulse response of order L. Then, 
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where w[k] is white Gaussian noise. Given that the channel impulse response is known or 

has been estimated, the input sequence can be estimated by minimizing 
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Note that by minimizing the above expression, we are implicitly maximizing the 

likelihood function. If s[k] is restricted to M different symbols, then the Viterbi algorithm 

can be  implemented to find the most likely input sequence from ML different possible 

input sequences (or states). Thus, the ML states represent all possible combinations of the 

following L-tuples 
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The trellis diagram is determined by the number of states (number of possible 

different input sequences) while the metrics of the Viterbi algorithm depends on the 

estimated channel h[k]. Thus, estimation of the channel impulse response is crucial for 

the implementation of the MLSE. Since it provides the minimum probability of a symbol 

error under AWGN, the MLSE is optimum. However, It is a nonlinear channel equalizer 

and becomes more complicated when number of states ML getting large. 

 

 



Chapter 3 

Blind Channel Equalization 

 

As was shown from the previous section, knowledge of channel impulse response 

is essential in designing our equalizer filter and MLSE metrics. Identification of unknown 

channel impulse response can be achieved with a training sequence. In some cases, 

sending a training sequence is considered impractical (see introduction). Also, the use of 

training sequence can reduce bandwidth efficiency.  

A better way to solve this problem comes from the use of blind channel 

equalization. There are two ways to approach this blind equalization problem. The first 

one is to use blind channel identification to define the channel impulse response. Once 

the channel impulse response is known, an appropriate equalizer or MLSE metrics can be 

constructed to remove the ISI. The second approach is to eliminate the step of blind 

channel identification and directly derive the equalizer from input statistics and the 

channel output. The latter approach will be introduced, however, the focus of this paper is 

on the first approach. 

 Let’s first discuss the direct blind channel equalization. Since the training 

sequence is missing, the receiver does not have access to the desired equalizer output 

(a[k] in the previous diagram). Obviously, in blind channel equalization, there is a need 

to define a non-MSE type cost function to be minimized. The design of the blind 

equalizer thus becomes a matter of defining a special mean cost function E{Ψ(⋅)}, which 

implicitly involves higher order statistics of the channel output. By exploiting these 

higher order statistics, the channel transfer function phase can be recovered. The reason 



for missing transfer function phase response is that the second order statistics, namely, 

the power spectrum density function provides information only on the channel magnitude 

response. Consider the following linear input-output relationship of a single-input-single-

output (SISO) channel 

)()()()( 2 ωωωω wsx SSHS += .       (3.1) 

From the above expression, one can clearly conclude that the phase information of the 

channel H(ω) cannot be retrieved from the power spectrum of the channel input Ss(ω), 

channel output Sx(ω) and the channel noise Sw(ω). The following few paragraphs should 

mmarize several method of direct blind adaptive equalization. su

 By removing the training mode from the adaptive equalizer, the decision direct 

mode alone becomes the simplest form of adaptive blind channel equalization. It 

minimizes the MSE between the equalizer output and the decision output (see Chapter 3 

about adaptive equalizer). The performance of this equalization approach is highly 

dependent on the equalizer’s initial condition. That is, local convergence is likely if there 

are significant differences between the initial parameter and the actual parameter of the 

channel impulse response.  

 In 1975, Sato [1] introduced the first truly blind equalizer for multilevel PAM 

signals. The equalizer is actually identical to the decision direct mode of an adaptive 

equalizer when the PAM input is binary. In this algorithm, the special error function is 

defined as 
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In 1980, Benveniste et al. [8] generalized the Sato’s error function into 
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The generalization uses an odd function )(xaψ , whose second derivative should satisfy 
 

0,0)('' ≥∀≥ xforxaψ .       (3.4) 
 

Then the so-called “stop-and-go” algorithm was introduced by Picchi and Prati 

[9] in 1987. Picchi figures that the sign of the error signal ])[( kyψ often determines the 

convergence characteristics of these adaptive algorithms. So, this “stop-and-go” 

algorithm allows adaptation “to go” only when the several derivative functions agree in 

sign for current output y[k]. When the derivative functions sign differ for current output 

y[k], parameter adaptation is stopped and maintain their current values. 

One of the most popular blind channel equalization method known as Constant 

Modulus Algorithm (CMA) was presented in [10]. By integrating the Sato error function 

( )xψ . The Sato algorithm has equivalent cost function 

2)][(
2
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Godard generalized this expression in his paper [10] and specified a new class of error 

function as 
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Using stochastic gradient descent approach, the Godard algorithm can adaptively 

adjusts the equalizer’s parameter to its optimum value in most cases. For further study of 



these adaptive blind methods and its convergence analysis, the reader should consult a 

book like [6]. Although adaptive SISO blind channel equalization can give satisfactory 

result under appropriate initialization, they have two major weaknesses. First, local 

convergence is more than likely in many adaptive blind equalization schemes. Also, the 

convergence of these schemes is somewhat slow and may require a large amount of data 

samples. In a fast time-varying environment, the second requirement is utterly 

undesirable. Recently, new and better schemes have been proposed to overcome these 

two major drawbacks. By exploiting the spectral diversities of oversampled channel 

output or the use of multiple sensors, the blind channel identification can be achieved 

with only the second order statistics [11][12][13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

The Least Square Approach 

 

As mentioned in the previous section, the second-order stationary statistics do not 

contain sufficient information on a nonminimum phase system. Gardner [13] proved that 

the second-order statistics (SOS) of cyclostationary signals provide enough information 

for the phase recovery. There are many different papers that have been written on blind 

channel identification based on SOS, i.e., TXK method [11], Subspace method [12] and 

Gardner [13]. However, this paper will focus on a new innovative approach, namely, the 

Least-Square approach to this blind channel identification problem [14]. 

 In the papers [11] [12] [13], the authors assumed certain statistical model for the 

channel input. However, in many cases, the statistics may not be available or impossible 

to obtain. For example, there may not be enough data samples to estimate an accurate 

statistical model in a fast fading environment. It can be proved that, under certain 

conditions, it is possible to identify multichannel FIR system without even having 

knowledge of statistical model of the channel input [14].  

The basic idea behind this innovative approach is the concept of subchannel 

matching. Before going into the detail of subchannel matching. Let’s first restates the 

problem of blind channel identification 

Mijksjhkx
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j
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0
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=

,       (4.1) 

where M is the number channels and L is the maximum order the M channels. The blind 

channel identification problem can be stated as follows: Given the observations of 



channel output {xi[k], i = 1, …, M; k = L,…, N}, determine the channel { and 

further recover the input signals {s[k]}. The following schematic illustrate the concept of 

this deterministic blind identification approach. 
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where  stands for convolution. For SIMO systems with M subchannels, there will be 

M(M-1)/2 such output pairs. The use of such subchannel matching is the fundamental 

idea behind the new blind channel identification. 

⊗

Subchannel matching between the ith and the jth outputs in matrix equation 

requires that 
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where Xm(L) is a (N-2L+1) by (L+1) matrix. Now, combine all the channel coefficients 

into a single vector 
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where h is a M(L+1) by 1 vector. Also, combine all the subchannel matches with respect 

to ith subchannel and express in matrix form 
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For example, for M = 5, 
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and 
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and so on. In general, one can put all these M signal matrices into a matrix X(L), where 
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and X(L) is MLbyMMLN )1(
2

)1()12 +( −
+− matrix. Now, one can incorporate all 

M(M-1)/2 pairwise matching equations to estimate the unknown channel impulse 

response by solving the matrix equation 

0hX =)(L .       (4.11) 

Apparently, in the noiseless case, vector h is in the null space of the above matrix 

equation. In order to use the Least-Square approach, rewrite this expression in the 

equivalent scalar form 

0)()()( 2 == hXXhhX LLL HH .     (4.12) 



Now, define matrix A such that 

)()( LL H XXA = .      (4.13) 

Then, the condition in equation (5.12) can be rewritten as 

0=Ahh H .       (4.14) 

By solving equation (4.14) with singular value decomposition (SVD), the channel 

impulse response can be identified up to a constant ambiguity. That is, the eigenvector of 

A correspond to the zero eigenvalue of A is the best estimate of h with a constant 

ambiguity. To prove this, let λi and ui be the ith eigenvalue and eigenvector of matrix A 

respectively, that is 

iii uAu λ= .       (4.15) 

By choosing the eigenvector ui for which λi = 0, and substitute ui for h in equation (4.14) 
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This shows that ui is the best estimate of h and is unique if matrix A has only one zero 

eigenvalue. 

As mentioned before, this least square method does not assume any statistical 

model for the channel input. This advantage leads to a simpler implementation scheme. 

In the case where noise is present, the linear equations become non-homogenous. 

However, one can still estimate h by solving the following least squares problem: 

2
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ˆ)(min hX
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or equivalently, 
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The estimated channel impulse response h  should be equal to the eigenvector of A that 

corresponds to the smallest eigenvalue of matrix A.  

ˆ

Although the proposed channel identification algorithm does not assume any 

particular statistical model for the channel input, however, the input characteristics are 

certainly not to be neglected. An obvious degenerate case is that the channel input 

contain only zero. In that case, channel output will provide no information about the 

channel impulse response. Now, consider the identifiability conditions of SIMO blind 

identification [14]. First, the channel impulse response can be identified uniquely if and 

only if the data matrix X(L) is of rank M(L+1)-1. Second, the blind identification solution 

is unique if the subchannel impulse response hi[k] and hj[k] do not share any common 

zero [6]. That is, if hi[k] and hj[k] are the coefficients for two different polynomials, then 

the two polynomials should not share any common roots. These two conditions give the 

sufficient conditions for blind identification of SIMO system. Signals, such as white 

noise, are rich in frequency content and therefore the sufficient conditions can be 

matched by increasing the number of data samples. However, the degeneration can easily 

occur when the data sequence is extremely short. 

 

 

 

 

 

 



Chapter 5 

Computer simulations 

 

Computer simulations were conducted to evaluate the performance of the 

proposed algorithm. A set of MatLab programs was written to perform these computer 

simulations. 

 

5.1     Computer simulations for Random Signal as Channel Input 

 

In the first simulation study, the number of channels is fixed at M = 4 and the 

signal-to-noise (SNR) is fixed at 25 dB. In the figure next page, the results were obtained 

by using three different numbers of samples, varying from 100 to 10000. In the figure, an 

open circle at the end of a stem represents the true channel impulse response and each 

little dot represents the estimation results for a given simulation run. For each coefficient 

estimated, there is a grouping of the little dots around the true value. Each grouping 

contains 1000 points, which represents 1000 simulation runs. Note that as the number of 

samples increase the estimation error decreases resulting in tighter groupings around the 

true channel impulse response (the circle).  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 In the second simulation study, the number of samples used equals 1000 and the 

number of channels is fixed at 4. By varying the SNR from 50 to 10 dB, the following 

diagram was plotted.  

 

As the SNR varied from 50dB to 10dB, the accuracy of the channel identification 

degraded and the algorithm ceased to provide reliable results between 20dB and 10dB.  

 In the third simulation study, the result shows that the number of channels and the 

number of coefficient can be arbitrary. With the SNR equals 40dB and the number of 

samples used equals 1000, the following diagram was plotted. 



 

From the diagram, one can see that the channel coefficients were successfully estimated 

even when the number of subchannel is increased to 7 and the channel length is increased 

to 8. Now, switching back to the 4-subchannel setting, the next computer simulation 

shows how the common zeros degrade the estimation performance. With SNR again 

equal to 40 dB and the number of samples used fixed at 1000, the following diagrams 

with different number common zeros were obtained. 



 

The common zero weakens the performance of the algorithm only when the common 

zero is presented in every channel. Now, the next computer simulation should show that 

the order of each subchannel could be different from each other without affecting the 

identification capability. In this simulation, we have four different subchannels and the 

order of each subchannel is the following: 

Subchannel 1:  L = 2 

Subchannel 2:  L = 3 

Subchannel 3:  L = 2 

Subchannel 4:  L = 4, 

where L is the order of each subchannel. With SNR fixed at 25 dB and number of 

samples used equals 1000, the following diagram illustrated that the different order of 

each subchannel did not affect the identification capability. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.2     Computer simulations for FM Signal as Channel Input 

 

Now, the first identifiability condition of SIMO blind identification is that the 

bandwidth of the channel input signal must be sufficiently large. All the computer 

simulations demonstrated in the pervious section are based on a random channel input. 

Now, by varying the bandwidth of an FM signal, the implication of the identifiability can 

be tested. 

FM (Frequency Modulation) is a form of angle modulation in which the 

instantaneous frequency is varied linearly with the modulating signal (or the message 

signal). Thus, in FM the instantaneous frequency fi is  

)()( tmkftf fci += ,     (5.2.1) 

where kf is a constant and fc is the carrier frequency. Equation (5.2.1) shows that the 

effective bandwidth of a FM signal is proportional to the constant kf. As the value of kf 

increases, the effective bandwidth of a FM signals should also increase.   

In this computer simulation, the SNR is fixed at 40 dB and the number of samples 

used equals to 1000. By varying the value of kf, the effective bandwidth of the FM signal 

is also varied. The following diagram was obtained by varying the kf value (effective 

bandwidth) of a FM signal. 



 

Again, higher value of kf corresponds to a higher bandwidth. As the bandwidth of the FM 

signal decreases, the channel identification performance deteriorates. 

 

 

 

 

 

 

 

 

 

 

 



5.3     How to estimate the channel length 

 

5.3.1 Theory 

 

The order of each subchannel was assumed to be known in the pervious section. 

In practice, this assumption may not be true. Therefore, there is a need for an algorithm to 

estimate the channel length (or the order) L for each subchannel. 

By using the singular value decomposition (SVD), the matrix A defined in 

chapter 4 can be rewritten as 

TVΣUA = ,      (6.3.1) 

where the matrices U and V are each orthogonal in the sense that their columns are 

orthonormal. Also, matrix Σ is a diagonal matrix with positive or zero singular values (or 

eigenvalues) as its diagonal elements. Again, the column vector of U that corresponds to 

the smallest eigenvalue in matrix Σ is the best estimate of the channel impulse response in 

the presence of noise. To give some specific dimensions to Σ, U and V, let’s consider the 

following example: Assume that the number of subchannel is four and the order for each 

subchannel is also four. Also, the number of samples used equal to 1007. Then, from 

chapter 4, the matrix X(L) should be a 6000 by 20 matrix and the matrix A should be a 20 

by 20 matrix. Therefore, the dimensions for matrices Σ, U and V are all 20 by 20. 

However, if L = 5, then the dimensions for matrices Σ, U and V become 24 by 24 and the 

column vector of U no longer contain reasonable estimate of the channel impulse 

response. 



 To fix the problem of unknown channel length [14], one can first overestimate the 

channel length as Le and form X(Le) as in equation (4.10). Then, perform an SVD on 

X(Le) to estimate how many singular values in Σ are correspond to this overestimation. 

Finally, detect the channel length L and use it to form X(L) as in equation (4.10). 

 

5.3.2 Computer Simulation 

 

Computer simulation was conducted to test the performance of the algorithm 

proposed in the pervious section. First, assume that the maximum order of each 

subchannel is seven. That is, Le = 7. With SNR = 30 dB and the number of samples used 

equals to 1000, the matrix X(Le) is constructed. Then, the matrices A and Σ are evaluated 

and the singular values in matrix Σ are plotted in the following diagram. 

 



Since Le = 7, there are 32 singular values in the matrix Σ. In order to isolate the singular 

values that correspond to the overestimation, a threshold should be set. By trial and error, 

the threshold is set to be 30% higher than the smallest singular values. 

 

From the diagram above, the threshold has isolated four singular values from the matrix Σ 

and the overestimation process causes three of the singular values. Therefore, L = 4 and 

the next diagram illustrates how this algorithm performs in 1000 different computer 

simulations. 



 

The diagram shows that this algorithm has successfully fixed the problem of unknown 

channel length. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

Conclusion 

 

In this paper, the traditional and blind channel equalization method have been 

presented. The main focus of this paper is the blind channel identification with unknown 

deterministic input. Least-Square approach has been used to solve this identification 

problem and computer simulations have been implemented to demonstrate the potential 

of this blind algorithm. A series of computer simulation have been used to validate this 

Least-Square algorithm. 

 In chapter 5, the computer simulations have shown that as the SNR and the 

number of samples used increase, the channel identification capability improved. The 

number of subchannel and the order of each subchannel do not affect the performance of 

the proposed Least-Square algorithm. The bandwidth of the channel input does concern 

the performance of the algorithm. As the bandwidth decrease, the estimation error 

increases. This algorithm can also be used to estimate the channel impulse response even 

when the channel length of each subchannel is unknown. 

 Also, the ‘Least-Square Approach to Blind Channel Identification’ is well suited 

to the emitter location because it naturally exploits the multiple channels available from 

the multiple receivers and requires very little prior information about the transmitted 

signal. 
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