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Abstract—Multiple sensors can locate an emitter by sharing 
data between pairs of sensors and computing 
time/frequency-difference-of-arrival (TDOA/FDOA).  We 
address optimal selection of a subset of sensors to reduce 
the needed network capacity.   Fisher information is used to 
assess the data quality and geometric impact to manage the 
network to optimize the location accuracy subject to 
communication constraints.   

We propose various approaches and discuss trade-offs.  The 
first method assumes that the sensors have been pre-paired. 
The second method optimally determines pairings as well as 
selections of pairs but with the constraint that no sensors are 
shared between pairs.  The third method consists of 
allowing sensors to be shared between pairs. 

The first method is simple to solve but clearly the pre-
pairing requirement makes this method very sub-optimal.  
In the second method, it is simple to evaluate the Fisher 
information but is challenging to make the optimal 
selections of sensors.  However, the opposite is true in the 
third method: it is more challenging to evaluate the Fisher 
information but is simple to make the optimal selections of 
sensors.   
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1. INTRODUCTION 

Multiple sensors can locate an emitter by sharing data 
between pairs of sensors and computing time/frequency-
difference-of-arrival (TDOA/FDOA).  We address optimal 
selection of a subset of sensors to reduce the needed 
network capacity. 1 2    Fisher information can be used to 
assess the data quality across multiple sensors to manage the 
network of sensors to optimize the location accuracy subject 
1                                                           
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to communication constraints. From an unconstrained-
resources viewpoint it is desirable to use the complete set of 
deployed sensors; however, that generally results in an 
excessive data volume. Selecting a subset of sensors to 
participate in a sensing task is crucial to satisfying trade-
offs between accuracy and time-line requirements.  For 
emitter location it is well-known that the geometry between 
sensors and the target plays a key role in determining the 
location accuracy.  Furthermore, the deployed sensors have 
different data quality.  Given these two factors, it is no 
trivial matter to select the optimal subset of sensors.   

We propose various approaches to this problem and discuss 
trade-offs between them.  The first method assumes that the 
sensors have pre-paired and share their data between these 
pairs; sensor selection then consists of selecting pairs to 
optimize performance while meeting constraints on number 
of pairs selected.  The second method consists of optimally 
determining pairings as well as selections of pairs but with 
the constraint that no sensors are shared between pairs.  The 
third method consists of allowing sensors to be shared 
between pairs. 

We discuss several aspects of these three methods.  The first 
method is simple to solve but clearly the pre-pairing 
requirement makes this method clumsy and very sub-
optimal.  In the second method, it is simple to evaluate the 
Fisher information but is challenging to make the optimal 
selections of sensors.  However, in the third method things 
are reversed in that it is more challenging to evaluate the 
Fisher information but is simple to make the optimal 
selections of sensors.   

Our general interest is in achieving network-wide 
optimization over a large number of simultaneously 
deployed sensors to enable more efficient and effective 
cooperation within the network of sensors. 

We consider the specific scenario of using the sensors to 
locate a non-cooperative RF emitter by TDOA/FDOA-
based methods; here TDOA refers to Time-Difference-of-
Arrival and FDOA to Frequency-Difference-of-Arrival, 
which can be jointly estimated by cross-correlating signals 
from a pair of the sensors. The accuracy of the 
TDOA/FDOA estimates depends on the signal SNR and the 
time-frequency structure of the intercepted signal; however, 
the accuracy of the location estimation depends also on the 
emitter/sensor geometry. The goal of our work is to 
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optimize over the set of all sensor assets, under the 
constraint of limited network communication resources. 

2. PROBLEM DESCRIPTION 

For simplicity we consider only the 2-D geometrical 
scenario. In the scenario we consider a rough estimate of 
emitter location has already been made (either by our 
system or by a cueing system).  As shown in Figure 1, we 
wish to find the location of a stationary emitter, denoted by 

[ , ]T
e ex y≡u , using signals intercepted at N unmanned 

aerial vehicle (UAV) sensors denoted S1 to SN, whose 
positions are [ , ]T

i i ix y≡x  and speeds are [ , ]T
i i ix y≡x� � � , 

for  .  1,2, ,i N= …

 
Figure 1 Geometry for stationary source location 

 

Let  denote the Euclidean distance between the emitter 

and the  sensor ; that is 
ir

thi iS

 2( ) (i i i e i er x x y= − = − + −x u 2)y . (1) 

To compute the TDOA/FDOA measurements the sensors 
must be paired. We consider three types of pairings within 
the network of sensors, as shown in Figure 2.  

(1) Type-I: No Sensor Sharing (two pairs that do not share 
a sensor are said to be “independent pairs”);  

(2) Type-II: De-Centralized Sensor Sharing (i.e., sensors 
are shared between pairs but no sensor is part of more 
than two pairs); 

(3) Type-III: Centralized Sensor Sharing (i.e., a common 
reference sensor is used). 

For the  pair of sensors the TDOA thi iτ  and FDOA iω  
between the signals received at the two sensors in the pair 
are given by 

 
( )

( )

,1 ,2

,1 ,1 ,2 ,2

1

,

i i i

T Te
i i i i i

r r
c
f
c

τ

ω

= −

= ⋅ − ⋅u x u x� �
 (2) 

where is the unit vector pointing from the sensor in 

the  pair to the emitter, for , and 
.i ku thk

thi 1,2k = ef  is the 
transmitted frequency of the transmitter (assumed estimated 
in advance). 

 
Figure 2 Three types of sensor network 

 

 Assume there are M pairs totally. Let  

be the parameter vector to be estimated by the  pair of 
sensors, which is paired by (  and 

[ , ]
m m m m

T
m k j k jτ ω=θ

thm
)th

mk ( )th
mj  sensors, 

where 1,2, , ;m M= …  and {1,2,..., },m m m mk j N k j∈ ≠ .  
Let ˆ

m mk jτ  and ˆ
m mk jω be the estimates, 

m mk jτΔ  and 
m mk jωΔ  

be the estimation errors, then 

  (3) 
ˆ

ˆ
m m m m m m

m m m m m m

k j k j k j

k j k j k j

τ τ τ

ω ω ω

= + Δ

= + Δ

Because the estimate  is obtained by maximum 
likelihood (ML) estimator 

ˆ
mθ
[3], the asymptotic properties of 

ML estimators [4] gives that the PDF of it is Gaussian with 
covariance matrix that is the inverse of the Fisher 
information matrix (FIM), so 

  (4) 1~ (0, )m m

m m

k j
m

k j

N
τ

ω
−

Δ⎡ ⎤
⎢ ⎥
Δ⎢ ⎥⎣ ⎦

FI

As we know  depends only on the sensors received 
signals according to 

mFI
[4]
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( ) ( )12Re

H
m m m m
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m m

−⎡ ⎤∂ ∂
= ⎢ ⎥∂ ∂⎣

s θ s θ
FI Σ

θ θ ⎦

⎤
⎥
⎥
⎥
⎥

, (5) 

where  is the vector of received signals and is the 
covariance of the AWGN at the m

ms mΣ
th sensor pair.  The FIM of 

has a block structure as 1 2[ , , , ]T T T T
Mθ θ θ θ…=

 , (6) 

1 12 1

21 2 2

1 2

M

M

M M M

θ

⎡
⎢
⎢=
⎢
⎢
⎣ ⎦

FI I I
I FI I

F

I I FI

"
%

# % % #
"

where  is the cross term FIM between  and  
pairs, which is evaluated in Appendix-A.  

,m kI thm thk

The TDOA/FDOA estimates are then used by the sensor 
system to estimate the location of the emitter.  Because of 
the asymptotic properties of the ML estimator of 
TDOA/FDOA we can take the TDOA/FDOA estimates as 
Gaussian so that the FIM of the estimate of the geo-location 
is given by [6]

 , (7) 
1

1 , , , ,geo m M

M

θ

⎡ ⎤
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

T T

G
J G G G F

G
" " #

where is the Jacobian matrix of the  pair of sensors, 

defined by 

mG thm
( )m

m
∂

=
∂
θ uG

u
 and calculated by 

 .(8) 
2 2

( ) / ( ) /

( ) / ( ) / / /
m m m m

m m m m m m m m m m

T T
k k j j

m T T T
k k k j j j k k j

r r

r r r

⎡ − − −
= ⎢

− − − − +⎢⎣

x u x u
G

x u r x u r x x� � � �T
jr

⎤
⎥
⎥⎦

Our objective is to select an optimal subset of sensors and 
pair them as well. The criterion we used to make the 
decision is the trace of FIM of geo-location [6],[7] as 

 ( ){ }max ( subset )geoall possible subset solutions
trace J  (9) 

 In the following sections, we discuss sensor selection 
algorithms for the three network types. 

3. ALGORITHMS 

3.1 Pre-Paired Sensors 

When sensors are pre-paired, we simply select pairs instead 
of sensors.  The FIM  and cross-FIM  are evaluated 
based on the paring and sensor sharing. 

mFI ,m kI

Type-I: No Sensor Sharing—When no sensor is shared the 
cross-FIMs  are zero.  The  are evaluated 

individually for each pair. Then 
,m kI mFI

θF  will have block 
diagonal structure as 

 

1

2

M

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

FI 0 0
0 FI 0

F

0 0 FI

"
%

# % % #
"

 (10) 

The problem of selecting K  sensor pairs from N pairs is 
specified by 

 .(11) 1
1 1 1 1, ,

1

max { ( ( ) ( ))}

           . .   ,    {0,1}
N

T T
N N N Np p

N i

trace p p

s t p p K N p

+ +

+ + = < ∈

G FI G G FI G

The solution of this was discussed in [7]: we simply select 
the K pre-paired sensor pairs that have the largest values of  

 ,{ } { T }geo k k k ktrace trace=J G FI G . (12) 

Type-II: De-Centralized Sensor Sharing—Here we treat 
sensors by sensor sets, where a sensor set is defined as a 
group of sensors which have no connections to sensors 
outside the group and do not have any independent pairs 
inside the group.  For the sensor network in Figure 2 (b), the 
sets are defined as in Figure 3. 

Pair
-1 Pair-4Pa

ir-
3

 
Figure 3 Sensor sets example 

 

The geo-location FIM of each sensor set is computed; for 
example, the evaluation of set-1 is 

 . (13) , 1 1 1 1 2 2 2 1 1,2 22geo set− = + +T T TJ G FI G G FI G G I G
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Then the problem of selecting K  sensors from M sets is 
specified by 

  (14) 
1

1 , 1 ,, ,

1 1 1

max { ( )}

 . .   ,    {0,1}
         is the number of sensors in set-i

N
geo set M geo set Mp p

M i

i

trace p p

s t p n p n K N p
n

− −⋅ + + ⋅

⋅ + + ⋅ = < ∈

J J

and can be easily solved. For example, if we are asked to 
select 5 sensors, we can check the set which has 5 sensors, 
or the two sets which have 2 sensors and 3 sensors 
respectively, and add the trace of the two sets up, compare it 
with the one with 5 sensors and choose the larger one. 

Type-III: Centralized Sensor Sharing—For the pre-paired 
case, the central sensor is already specified and the 
remaining  sensors pair with it to form 1N − 1N −  
centralized pairs. There are possible ways to select 

pairs. The FIM of this set will have the following 
structure 

1
K
NC −

K

 . (15) 
1,

, ,
1 1, 1

2
m K k KK

geo k k k k m m k k
k m k m

= − =

= = = +

= +∑ ∑TJ G FI G G IT G

r F

)

5

If the  sensor is the reference sensor then Appendix-A 
states that  and . In this case, we 
have to evaluate the trace of all the FIMs of geo-location of 
the  possible combinations, and choose the largest 
one: 

thr
k k= +FI F F ,m k r≡I

1
K
NC −

  (16) 1
,

, { }

1

max { ( )}

 { }is all the possible combination set

K
N

set k
set k C

K
N

trace

C
−∈

−

J

 

3.2 Non-Pre-Paired Sensors 

We are given a set of sensors and asked to optimally choose 
a subset and the optimal pairings as well. In this case the 
pairing provides more flexibility to enable better 
performance but it introduces additional complexity as well.  

Type-I Pairing of Sensors: No Sensor Sharing—For  
sensors, there could be  independent pairs. To choose 

 pairs is a time-consuming work if we 
enumerated all the possible solutions. For example, 

, there are possible pairs, and 
possible ways to make 5 

pairs as a subset. Fortunately, since there is no sensor 
sharing and we select sensors pair by pair, the selection of 
the next pair will not affect the selection of the previous 
one. This yields a tree structure and allows use of integer 

dynamic programming method 

N
/ 2N

( / 2K N≤

10N = 2
10 45C =

( 1) ( 3) 3 1 94N N− ⋅ − ⋅ ="

[5].  For this paper we used 
the “Branch and Bound” method to choose a pair at each 
step. The objective function is  

 
,  1

max ( )th

K

geo k pair in the solutionall feasible solutions k

trace
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ J  (17) 

A “feasible solution” means any selection/pairing of sensors 
where no sensors are shared and the selected number of 
sensors is as required.  Appendix-B illustrates a simple 
example of this method. 

Type-II Pairing of Sensors: De-Centralized Sensor 
Sharing—For  sensors, there could be  possible pairs. 

To choose  pairs, there are be 

N 2
NC

2( NK C≤ ) 2
N

K
C

C  possible ways 

to pair and then select K pairs. For example, for 
10, 5N K= = , the number of ways is 122,1759, which is 

quite large and nonconductive to listing all of them. But 
fortunately, among all this large number of ways to pair and 
select, only a small number of them are unique. We have 
established the following theorem which is proved in 
Appendix-C. 

Theorem: For M  sensors, at most independent 1M −  
pairs can be used as a “sensor set”; and different pairing 
methods of the M  sensors to make 1M −  independent 
pairs will result in the same CRLB of geo-location. 

We can exploit this result to simplify the optimal selection 
and pairing for this case. When we are given N  sensors 
and asked to make K  pairs, there are many solutions for 
this network. We can use at least  sensors to make it 
or at most 2 . Since the main advantage to share sensors 
is to save some sensor energies, we would like to use the 
number of sensors as less as possible. So here we only 
choose 

1K +
K

1K +  sensors to make  pairs. K

For example, for given  and  pairs needed, 
compute the FIM of geo-location of all 

7N = 3K =
4
7 35C =  solutions, 

and find the one with the largest trace. Inside each solution, 
sensors are “paired by sequence.”  For example, as in Figure 
4, the solution set is . 4 1 2 5{ , , , }S S S S

 
Figure 4 An example of pairing by sequence  
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4. SIMULATION RESULTS 

To demonstrate the capability of the sensor selection 
methods we present some simulation results for the case of 
locating an emitter with a random lay-down of 14 sensors.  
The sensor selection proceeds as follows. Each sensor 
intercepts the emitter signal data at SNRs in the range of 
10~15dB (where the SNR variation is assumed to depend 
quadratically on the range to the emitter). The full set of 
sensors share a very small amount of data to obtain a rough 
estimate of the emitter location; alternatively, we could 
consider the case where the system is cued by some other 
sensor system that provides a rough location that is to be 
improved using our sensors. 

Figure 5 shows the performance of sensor selections 
without sensor sharing. We select 6 to 14 sensors to make 3 
to 7 pairs, shown on the horizontal axis. The vertical axis 
shows the standard deviation of the geo-location error 
versus the number of sensors/pairs selected. The upper 
curve (-Δ-) shows the performance for the pre-paired sensor 
case without sharing; the lower curve (-O-) shows the 
performance when using the selection and pairing method 
discussed above for the case of no sensor sharing.  Not 
surprisingly, the ability to select the pairing on the basis of 
the sensor geometry and the rough emitter location enables 
better performance than using pre-paired sensors. 
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Figure 5 Performance of sensor selection w/o sharing 

 

Figure 6 shows the time consumption used in pairing 
sensors  for the non-sharing case versus the number of 
sensors/pairs selected. The upper line (-Δ-) shows the time 
required for the enumeration-based method, the lower one (-
O-) shows the time required for our selection and pairing 
method. These time results are for matlab-based 
implementations. 
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Figure 6 Time consumption of sensor pairing without 

sharing 
 

Figure 7 shows the performance of sensor selections 
allowing sensor sharing. We select 5 to 11 sensors from 12, 
to make 4 to 10 pairs. It also shows the standard deviation 
of the geo-location error versus the number of sensors/pairs 
selected. The upper curve (-Δ-) shows the performance for 
the pre-paired sensor case with sharing; the lower curve (-
O-) shows the performance using our selection and pairing 
method with sharing that is based on the Theorem in 
Section 3.2. 

5. DISCUSSION 

The results above show that it is possible to select and pair 
an optimal subset of sensors while significantly retaining 
performance levels. The sensor selection optimization 
problem was based on the fact that the geometry property 
and data quality of sensors play important roles in the 
emitter location estimation. We have used Fisher 
information to capture this inter-play between data quality 
and geometry.  We have discussed different situations: (i) 
pre-paired sensors vs. optimally pairing the sensors, and  (ii) 
allowing shared sensors or not. Following are some general 
conclusions made from this work. 
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Figure 7 Performance of sensor selection allowed 

sharing 
 

Conclusions: Without Sensor Sharing 
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♦ FIM of Geo-Location is easy to calculate, since 
each pair is independent; 

♦ However, the pairing method is more complicated, 
since we need to consider all the possible paring ways; 

♦ From a system point of view, the communication 
among different pairs can be done simultaneously; 

♦ The number of pairs needed is small; beyond a 
certain point the accuracy improves slowly as more pairs 
are selected to participate. 

 

Conclusions: With Sensor Sharing 

♦ For a total of N sensors we can have as many as 
pairs, the more the higher accuracy of location 

estimation; 
1N −

♦ Fortunately, FIM of all the possible independent 
sets are the same, so we do not need to consider about 
the pairing method. One simple way is to pair the 
sensors in nature order.  This is the main result of this 
work and leads to a major reduction in the optimization 
processing required. 

♦ However, since not all the pairs are uncoupled, 
there are cross terms in the TDOA/FDOA FIM. This 
complicates the computation required to support the 
optimization processing. 

♦ Some sensors work in more than one pair, the 
communication among them needs to be considered 
carefully to avoid collision.  This will be the focus of 
future work. 

 

APPENDIX-A EVALUATION OF FIM CROSS-TERM  

Consider the case where two pairs share one sensor, as 
shown in Figure 8. 

 
Figure 8 Two pairs shared one sensor 

 

The three received signals at the sensors are 

 

1

2

3

1 1

2 2

3 3

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

j nT

j nT

j nT

1

2

3

s n s nT e n

s n s nT e n

s n s nT e n

ν

ν

ν

τ ω

τ ω

τ ω

= − +

= − +

= − +

 (18) 

where [ ]s nT  is the sampled transmitted signal, and 
[ ], 1,2,3i n iω =  is the AWGN received by sensor. 

Let 

 
1

2 13 1 3 23 2

3

;and 3τ τ τ τ τ τ
⎡ ⎤
⎢ ⎥= = − = −⎢ ⎥
⎢ ⎥⎣ ⎦

s
s s

s
 (19) 

The cross term FIM between pair-1 and pair-2 can be 
evaluated as 

 1,2 1,1
1,3 2,3

H

τ τ
⎛ ⎞ ⎛∂ ∂

= ⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

s sI i
⎞
⎟⎟
⎠

 (20) 

Since 

 

1
1 1 1

1,3
1 1,3 1

2

1,3 1,3
3 3 3

3
3 1,3 3

1,3

τ
τ τ τ τ

τ τ
τ

τ τ τ
τ

⎡ ⎤∂
∂ ∂⎡ ⎤ ∂⎢ ⎥ ⎡ ⎤⋅∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥∂∂ ⎢ ⎥⎢ ⎥ ⎢= = =

∂ ∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ −∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦⎣ ⎦⎢ ⎥∂⎣ ⎦

s s s

ss 0
s s

s

⎥0  (21) 

also 

 

1
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2 2 2

2,3 2,3 2 2,3 2

33 3 3

32,3 3 2,3

τ
τ

τ τ τ τ τ
τ

2

ττ τ τ
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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⎥

∂ ∂ ∂ ⎢⎣ ⎦⎣ ⎦ ⎣ ⎦

s
0 0

s s ss

ss s
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 (22) 

Substitute  (21) and (22) into (20), we get 

 (1,2) 3
1,1

3 3

H

3

τ τ
⎛ ⎞ ⎛∂ ∂

= ⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

s sI i
⎞
⎟
⎠

 (23) 

This is exactly the FI of TDOA of sensor  ’s received 
signal.  Following the same rule we get 

3S
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Therefore the FIM cross-term between pairs is just the FIM 
of the shared sensor itself. The FIM of 

 is 1,3 1,3 2,3 2,3[ , , , ]Tτ υ τ υ=θ

  (27) 1 1,2 1 3 3

1,2 2 3 2

( )
+⎡ ⎤ ⎡

= =⎢ ⎥ ⎢ +⎣⎣ ⎦

FI I F F F
J θ

I FI F F F

where   is the FIM of TDOA/FDOA of  sensor.  iF thi

APPENDIX-B AN EXAMPLE OF BRANCH AND 
BOUND METHOD USED IN SENSOR PAIRING 

Branch and Bound method is a widely used algorithm for 
efficiently finding the optimal solution of an integer 
optimization problem.  It is based on the fact that the 
enumeration of integer solutions has a tree structure.  It 
begins “growing” the enumeration tree by creating partial 
solutions called “buds.” The quality of a bud is assessed 
using the “bounding function,” which provides an 
optimistic estimate of the best value that the objective 
function could possibly obtain by extending from a given 
bud.  The best complete feasible solution found at any stage 
of growth of the tree is called the incumbent; a feasible 
solution is one that satisfies any given constraints.  A 
complete solution occurs at a “leaf” in the tree.  Efficiency 
is obtained by pruning unfruitful branches of the tree by 
using a “bounding function.” Buds are pruned if (i) further 
growth can not yield a better result than the incumbent (i.e., 
the bounding function value of the bud is inferior to the 
objective function value of the incumbent), or (ii) further 
growth can not yield any feasible solutions.  The optimal 
solution is found when further growth can not occur.  For 
our application a feasible solution is one for which no 
sensor sharing occurs.   

Consider an example of the sensor pairing and selection for 
sensors; there are 28 possible pairs. In this example 

we will arbitrarily assign values for the each pair so as to 
illustrate the typical operation. Our objective function is  

8N =

 
/ 2

1

max ( )th

N

n pair in a solutionfeasible solution n

trace FIM
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  (28) 

Here, feasible solution is the combination of sensor pair 
without sensor sharing. The bounding function used is  

 
/ 2

 1

max ( )th

N

n pair in a solutionany solutions n

trace FIM
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  (29) 

The solution in bounding function can be any combination 
of sensors, shared or non-shared. Let (n, m) represent the 
pairing of sensor-n and sensor-m.  In the first step, without 
loss of generality, we choose as buds that are the pairs that 
include sensor-1. Figure 9 shows this first layer of buds.  If 
we choose pair (1,2) as the first pair, then the bounding 
function value for it is 71 in this example, which leaves 
pairs (3,5)-(3,6)-(7,8) as the subsequent possible pairs. 
Since sensor-1 and sensor-2 are actually paired, we did not 
reuse them in the bounding function calculation at this node 
or any descendent nodes. From the bounding function value 
we know that the very best objective function value that we 
might have at a leaf node descended from (1,2) is 71. Since 
sensor-3 is shared between two pairs, this solution is not 
feasible, but at this stage it is retained because this 
infeasible solution is simply used to evaluate the bounding 
function for the feasible solutions that lie below this bud.   

The first step of the tree is generated from the root node by 
enumerating all the possible pairs which have sensor-1. By 
evaluating the bounding function, we get our first 
incumbent (i.e., best feasible solution so far) as (1,5)-(2,4)-
(3,6)-(7,8) , as incumbent=70; the buds that are shown 
exceeding this value can not be the incumbent because their 
bounding functions are computed based on infeasible 
solutions; however, they are retained to be grown further in 
hope that they may yield winning feasible solutions in the 
future. We now prune the pairs (1,6) and (1,8), because 
their bounding function values are smaller than the 
incumbent’s.   

Pruned nodes are indicated by a dashed border, the 
incumbent node is indicated by a bold solid border; nodes 
whose bounding function value is larger than the 
incumbent’s but are based on infeasible solutions are shown 
by a non-bold solid border. 
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Figure 9: Illustration of first step of tree 

 

There needs to be a policy that governs the choice of the 
next bud for expansion; we use the global-best node 
selection policy, which chooses from all the bud nodes on 
the tree the one that has the best value of the bounding 
function.  Thus, we choose pair (1,7) , which has the largest 
bounding function value, for first further expansion. This 
gives the next tree step as shown in Figure 10. 

 
Figure 10: Illustration of second step in tree 

 

This expansion is generated from the (1,7) node by 
enumerating all the possible pairs which have sensor-2, this 
is based on the so-called natural order. After evaluating all 
the bounding function values, some new nodes were 
pruned. But a new incumbent was not found in this 
expansion. Also, the global-best node selection policy 
assesses the bounding function values of all current 
remaining nodes (even those in the “Step-1 layer”), and 
chooses the one with the best bounding function value to 
expand further.  Thus, the partial solution (1,7)-(2,4) is 
expanded next, which gives the result shown in Figure 11. 

We now have found that (1,7)-(2,4)-(3,5) is a feasible 
solution with a value higher than the previous incumbent’s 
value of 70 and higher than any other feasible bud; thus, it 
becomes the incumbent with a value of 74.  Note that now 

all other remaining buds have bounding function values that 
are less than or equal to the incumbent’s value of 74; 
therefore, it is impossible for any of these buds to generate a 
feasible solution that beats the current incumbent.  Thus, all 
other nodes are shown as pruned in Figure 11, and (1,7)-
(2,4)-(3,5)-(6,8) is the optimal feasible solution  It should be 
noted that if all the buds grown out of (2,4) had a bounding 
function value less than the incumbent in Figure 10, then 
they would all be pruned; then the global-best node 
selection rule would go back to (1,4) and grow from there 
because it has the largest bounding function value of all 
buds grown so far on whole tree. 

(1,2)

(1,8)

(1,7)

(1,6)

(1,5)

(1,4)

(1,3)

71

Incumbent=74
(1,7)
(2,4)
(3,5)
(6,8)

STEP-1
(1st Pair)

ROOT

73

74

70 (2,3)

(2,4)

(2,5)

(2,6)

(2,8)

STEP-2
(2nd Pair)

73

(3,5)

(3,6)

(3,8)

(1,7)+(2,4)+(3,5)+(6,8)=74

(1,7)+(2,4)+(3,6)+(5,8)=72

(1,7)+(2,4)+(3,8)+(6,7)=64

71

STEP-3
(3rd and 4th Pair)

 
Figure 11: Illustration of third step in tree 

 

In this particular example, we only evaluated 15 nodes, 
which is much smaller than the work of a full enumeration 
of the 105 possible solutions. 

Simulation in Figure 12 gives the comparison of time 
consumption between enumeration method and the branch 
and bound method. We only let  for the largest 
number, since for larger , the enumeration method is 
virtually impossible to realize. 
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Figure 12 Time consumption of sensor pairing 
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APPENDIX-C PROOF OF THEOREM 

Let rk be the distance between  and the emitter and let  

be the sensor-emitter distance difference for 

. Then the relations between  

and  are as following 

kS

,k j k jr r= − r
≠

= ⋅T r

, {1,2,... },k j N k j∈ kr

,k jr

  (30) 

1 1

2 2

1

2

11M M

k j

k j
M N

Nk j NM

r r
r r

rr

×

××

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

T i
##

where T  is an M N×  matrix, (M is the number of pairs 
and N is the number of sensors), which has only one ‘1’ and 
one ‘-1’ in each row. For the structure of T , the rank of T  
is less than , which means there are at most N1N − 1−  

 independent pairs. Independent pairs, simply speaking, 

means that there are no closed loops in the graph of the  
sensors in the subset. For example, in the pairing in 

kjr

Figure 
13, the pairs (1,2), (1,3) and (2,3) are dependent pairs; (3,4), 
(4,5) and (5,6) are independent pairs.  

Let there be a different reference sensor (RS) in each 
different independent set as in Figure 14. In set-I,  is the 

RS; in set-J, 
iS

jS  is the RS. 

 
Figure 13 Independent and dependent pairs 

 

1,i

2,i

M+1,i 1,j

2,j

M+1,j

 
Figure 14 Same subset with different reference sensor 

 

Let c be the signal propagation speed, the range difference 
equation is 

 kj kj k jr c r rτ= = −  (31) 

When the receivers are moving, taking time derivative of 
(31)  yields a set of FDOA measurement equations 

 kj kj k jr c r rτ= = −� � � �  (32) 

where  is the rate of change of . From the time 
derivative of 

ir� ir
(1),  is related to the unknown location u  

by  
ir�

 
( )T

i
i

i

r
r
−

=
x u x�� i

i

 (33) 

Let  , 1 2 1 2[ , , , , , , , ]T
N Nr r r r r r=rd � � �… …

1 1[ , , , , ; , , , , ] ,T
i i ki Ni i ki Nir r r r r r k= ≠p � � �… … … … and 

1 1[ , , , , ; , , , , ] ,T
j j kj Nj j kj Njr r r r r r k j= ≠p � � �… … … …  then 

  (34) i
i

i

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

Τ 0
p rd

0 Τ
i iiH rd

jH rd  (35) j
j

j

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

Τ 0
p rd

0 Τ
i i

where  and iT jT  are ( 1)N N− ×  matrixes, which only 

has one ‘1’ and one ‘-1’ in each row, and 0  is a 
( 1)N N− ×  matrix with all 0 entries. It is easy to verify 
that there exists a 2( 1) 2( 1)N N− × −  full rank matrix 

, which satisfies ijQ

 j ij i=H Q Hi  (36) 

 j j ij i ij i= =p H rd Q H rd Q pi i i = i  (37) 

Then 

 

( ) ( )ˆ ˆ( ) [ ] ( ) [ ]

ˆ                 ( )

Ti i
j i

i i

T
ij i ij

CRLB CRLB

CRLB

∂ ∂
=

∂ ∂

=

g p g pp p
p p

Q p Q

i i

i i
 (38) 

Denote the emitter location u  estimated by sensor pair set-I 
as ; then the CRLB of u  is ˆ iu ˆ i

  (39) 1ˆCRLB( ) T
i i i

−=u G C Gi i i

]iwhere ˆ ˆ[ T
i iE= ⋅C p p  is the covariance matrix of the 

TDOA/FDOA estimates. 
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Since TDOA/FDOA are estimated by the ML method, we 
can assume that the covariance of the estimates achieve the  
CRLB, so  and  ˆ( )i iCRLB=C p

 ˆ ˆ( ) ( ) T T
j j ij i ij ij i ijCRLB CRLB= = =C p Q p Q Q Ci i i Qi (40) 

where G  is the Jacobin matrix of set-I defined by i

 
( ) ( )[ ( )]j i

j ij i ij ij i

∂ ∂∂
= = = =

∂ ∂ ∂

p u p uG Q p u Q
u u u

i i Q Gi

i

(41) 

Then 

 (42) 

1

1

1 1 1

1

ˆCRLB( )

                 ( ) ( ) ( )

                 [ ( ) ] [ ]

                 
ˆ                  = CRLB( )

T
j j j j

T T
ij i ij i ij ij i

T T T
i ij ij i ij ij i

T
i i i

i

−

−

− − −

−

=

=

=

=

u G C G

Q G Q C Q Q G

G Q Q C Q Q G

G C G
u

i i

i i i i i i

i i i

i i

Thus, we have proved that for all the independent sets, the 
CRLB of emitter location estimation are the same. 
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