
Handling Side-Information for Data Compression of Radar Pulse Trains

J. Andrew Johnson and Mark L. Fowler†

Department of Electrical and Computer Engineering
State University of New York at Binghamton

Binghamton, NY 13902

† Correspondence: mfowler@binghamton.edu

ABSTRACT

Previously a method has been proposed for a high-performance compression method designed expressly for compressing
intercepted radar pulse trains for the purpose of locating the transmitter. The method relies on gating pulses, putting them
into a pulse matrix and then using the singular value decomposition (SVD) to compress the signal data. The pulse gating
step, however, generated a sequence of varying integers as side information and the previous study did not provide a means
for efficiently coding this side information; although it did given an empirically generated estimate of the entropy of this side
information.

This paper reformulates the pulse gating method to generate a different form of side information that is much easier to
compress. It is shown that this new side information can be simply and efficiently coded at a rate that compares favorably
with the empirically-estimated entropy of the original method.

It is shown that this new pulse gating method requires the solution of an integer linear programming problem and
several standard methods are first considered. It is shown that the large number of constraints in the original formulation can
be significantly reduced by replacing the constraint set by its convex hull; simple rules for identifying the convex hull are
given. However, even with these reductions the execution time for these methods can be prohibitive at very large pulse
counts; furthermore, these methods exhibited numerical precision and convergence problems as the number of pulses
increased. Therefore, an efficient non-standard method for solving this integer optimization problem is developed by
exploiting characteristics of the objective function. This method solves the pulse gating problem with short execution times
that grow negligibly with increasing pulse counts.

Keywords: data compression, side information, integer optimization, singular value decomposition, SVD, emitter location,
time-difference-of-arrival, TDOA, frequency-difference-of-arrival, FDOA

1. INTRODUCTION
A common way to locate electromagnetic emitters is to measure the time-difference-of-arrival (TDOA) and the

frequency-difference-of-arrival (FDOA) between pairs of signals received at geographically separated platforms.1,2,3 The
measurement of TDOA/FDOA between these signals is done by coherently cross-correlating the signal pairs.2,3 This requires
that the signal samples of the two signals are available at a common platform, which is accomplished by compressing and
then transferring the signal samples over a data link from one platform to the other (see Figure 1). Various general data
compression approaches have been proposed,4−9 although they have not been designed to fully exploit the characteristics of
radar signals. For the radar case, the singular value decomposition (SVD) has been used10 to exploit redundancy between
pulses in a radar pulse train in order to achieve significant levels of compression ratio that exceed what is possible using the
previously proposed general methods.4–9

Section 2 will briefly review the previously proposed compression method10 and in particular will discuss the previous
problems with handling the side information. Section 3 reformulates the side information processing to eliminate the
difficulties previously encountered and in so doing it is seen that it requires the solution of an integer optimization problem.
Section 4 proposes several methods to solve the integer optimization problem and shows that a simple method exists to
effectively solve it. Section 5 provides conclusions.

Compress

Cross
Correlate

)(ˆ kd

)(ˆ ksc

TDOA
FDOA

)(ˆ ks

Platform#1
Platform#2Data

Link
Decompress

SNR

DNR

SNRc

Emitter

Figure 1: System Configuration for Compression

2. SVD-BASED DATA COMPRESSION FOR RADAR PULSE TRAINS
This section will give an overview of the previously proposed10 SVD-based method and describe the previous results on

handling the side information. Before compression processing, Platform #1 receives and digitizes the radar waveform. It is
assumed that the radar waveform contains a sequence of nearly-evenly spaced pulses. Once the signal has been digitized, it
was previously proposed to undergo data compression as described in Figure 2. It is clear that the pulses in the waveform,
and their relative positions, contain the information required, and the “dead spaces” between the pulses contain no useful
information. So, naturally, the first step in the data compression is to remove the unwanted samples between pulses by using
pulse gating.

Form
Pulse

Matrix

Align &
Reshape
Matrix

Compute
Truncated

SVD

Pulse
Gating

N1, N2, N3, N4, …
∆1, ∆2, ∆3, ∆4, …

Code

Bit
Stream

Radar
Signal

De-Align
Pulse

Matrix

Form
Rank-1
Matrix

Form Pulse Train
(Insert Zeros)

N1, N2, N3, N4, …
∆1, ∆2, ∆3, ∆4, …

De-Code

Radar
Signal

Compression

De-Compression

1û

1v̂

1u

1v
P

H
11

~
vuP =

P̂

H
11ˆˆˆ vuP =

Figure 2: Overview of SVD-Based Compression

The pulse gating step, as previously proposed, is illustrated in Figure 3. By design, a typical radar-interception receiver
detects the beginning and end of each pulse and measures the times at which these events occur. These time measurements
will be called the measured leading edge (LE) and measured trailing edge (TE); for each detected pulse the number of
samples that lie between TE and LE (inclusive) is the measured pulse width. The previously proposed pulse gating method
used a constant gate width W that is chosen to be equal to the largest measured pulse width in the pulse train. The gate for
each pulse starts at the pulse’s measured leading edge, resulting in a varying gate interval Gk between gate starting edges.
The samples falling inside each gate are put into the Pulse Matrix, with one pulse per row. Note that W and Gk are integers.

The pulse gating method also determines the number of samples excised after each pulse – this sequence of integers N1,
N2, N3, … are called the excision integers and must be sent as side information. It is the fact that the excision integers Nk

vary that leads to the previously noted problems in coding the side information.

Side Info to be Sent: N1, N2, N3, …

Received Pulse Train:

Nonaligned
Pulse
Matrix

N2 Samples N3 SamplesN1 Samples

Gate Gate Gate Gate

W Samples W Samples W Samples W Samples

G1 Samples G2 Samples G3 Samples

Figure 3: Previously Proposed Pulse Gating and Pulse Matrix Formation

After the Pulse Matrix is formed, the pulses in the rows are aligned using either fractional delay FIR filters or DFT-based
processing in order to obtain an Aligned Pulse Matrix that has rank of nearly one10. The amount of alignment imparted to
each pulse is sent as side information in the sequence ∆1, ∆2, ∆3, … as shown in Figure 2. If desired, the Aligned Pulse Matrix
can be reshaped by putting multiple pulses per row – proper reshaping has been shown to maximize the compression ratio10.
After alignment and reshaping, the resulting rank-nearly-one matrix P is decomposed using the SVD, which is used create

H
11

~
vuP = , an exactly-rank-one approximation to the Aligned Pulse Matrix, where u1 and v1 are the left and right singular

vectors (respectively) of corresponding to the largest singular value.
Effective methods for coding the singular vectors u1, v1 and the alignments ∆1, ∆2, ∆3, … have been determined10.

However, no explicit method was given for coding the side information of the excision integers Nk coming from the pulse
gating. In fact, only an estimate of the number of bits needed to code the excision integers was previously given as 2p+16
bits, where p is the number of pulses processed. This was determined by empirically computing the entropy of differential
forms of the sequence of excision integers Nk for some field-collected radar signals10.

The goal of the present paper is to better address the issue of coding the side information coming from the pulse gating.
Rather than deriving a scheme to compress the previously proposed excision integers Nk, we reformulate the pulse gating
problem and derive a new pulse gating method that results in side information that is easier to compress efficiently than the
originally proposed excision integers Nk.

3. PULSE GATING PROBLEM FORMULATION
The gating method developed here constrains the gate width W and the gate interval G to be constants – this yields a

constant excision integer N to be used between each pair of pulses, which makes the coding of the pulse gating side
information trivial. However, it also makes it harder to choose the proper W and G to yield a series of gates that completely
encapsulates the series of pulses. The challenge addressed in this paper is to find an effective way to choose a minimal gate
width W and the gate interval G; for maximum flexibility and performance we also include an initial gate offset T, thus the
first gate starts at index T. We desire a minimal gate width to reduce the size of the resulting Pulse Matrix to achieve an
effective level of compression.

To properly choose the pulse gating parameters W, G, T we formulate this mathematically. The kth gate is defined
according to

)1(:StopGate

:StartGate
th

th

−++

+

WTkGk

TkGk
(1)

The following conditions must be met for any viable choice of gating parameters W, G, T:
C1. Pulses must not be truncated; all digital samples from every pulse will be placed in the matrix.
C2. The gate width, W, the gate interval, G, and the initial gate offset, T, are restricted to be integers (i.e., an integer

number of samples).

As presented thus far, the goal is easily met by choosing W fairly large – on the order of the spacing between pulses. But, as
mentioned before, to ensure a high compression ratio we must choose the gate width W to be as small as possible; thus, to
ensure that condition C1 is satisfied requires explicit attention. Let tk and wk be the measured LE and pulse width,
respectively, for pulse k. Then condition C1 is satisfied when

1,,1,0for
)1()1(

−=

−+≥−++
≤+

pk
wtWTkG

tTkG

kk

k K (2)

where p is the number of intercepted pulses. We are finally ready to present the problem in the classic optimization form:

integers,,

0,

}1,1,0{forthatsuch

)(

:minimize

WGT

WG

wtWTkG

tTkG

pk

WT,G,Wf

kk

k

≥
+≥++

≤+
−=

=
K

(3)

To get a better perspective of this minimization problem, Figure 4 shows tk and (tk+wk) vs. k along with two lines of
slope G that bound these two sets of points – the bottom line has an intersect of T and the upper line is W above the bottom
line. Note that the bottom line touches at least one of the tk points whereas the upper line touches at least one of the (tk+wk)
points. On the left side of the figure the corresponding pulse gates are represented by shaded rectangles. Thus, the
minimization problem to be solved is to pick integers T, G, W (with G and W non-negative) so that the two lines enclose the
two sets of points while minimizing the vertical distance between the lines.

Now, what impact does this have on the coding of the side information? The coding of W is handled as before. The
coding of T can be absorbed into the overhead that exists whether compression is used or not – namely that there is some
minuscule amount of header information that describes the platform clock time of the first sample sent, which would be the
time of the sample at index T. Thus, the only side information that must be sent is G, which would require no more than 32
bits to handle realistic pulse spacing (pulse repetition interval) at typical sampling rates; in fact, fewer than 32 bits could be
used for most systems, but allocating an excessive number of bits to this one piece of side information has a negligible impact
on the resulting compression ratio. An implicit assumption has been made in the above analysis: there are no missing pulses
(i.e., undetected due to low SNR, for example). The impact of this on the specification of the above minimization problem is
negligible, but the impact on the amount of side information must be addressed. While there are perhaps more efficient

ways, we propose here to use a bit mask to indicate where there are missing pulses: the bit mask would have a “1” to indicate
a pulse is present and a “0” to indicate that a pulse is missing; the occurrence of a missing pulse can be recognized from
irregular spacing between LE times. Thus, the length of this bit mask will depend on the probability of a missing pulse Pmp.
If there are p intercepted pulses, then the expected length of the bit mask is p/Pmp bits. Thus, if we consider a rather low,
some-what worst case scenario, with a value of Pmp = 0.5, then the expected number of bits in the bit mask would be 2p bits.
Thus, we will use 2p + 32 bits as a rough upper bound on the number of bits needed for the gating side-information, which is
only slightly larger than the result conjectured for the original gating approach10. Thus, the compression ratio results derived
earlier10 are still valid.

0 1 2 3

W=5

t

Line with slopeG:
t=kG+T

Legend:

tk - Pulse Leading Edge

tk+wk - Pulse Trailing Edge

k

Line intersects
y-axis at t=T

t=kG+T+W

T

Figure 4: Pulse Leading and Trailing Edge Times vs. Pulse Index k

4. OPTIMIZATION METHODS FOR PULSE GATING
From the above problem formulation we see that we have reduced this problem to a traditional constrained linear

optimization problem11 with three exceptions:

E1. The objective function is not an explicit function of all the system variables. However, since W is implicitly a function of
G and T by virtue of the constraints, standard methods of solving are still applicable.

E2. T is not restricted to being non-negative, but most standard methods for solving constrained linear optimization problems
require all the variables to be non-negative.

E3. The objective variables are restricted to being integers. This makes the problem an integer programming problem12,
which complicates the solution.

In the remainder of this section we consider and compare several means to solve this optimization problem.

1. Constraint Relaxation
As a first step in understanding the path to a solution, we will consider use of the simplex method11,12. As mentioned

above, exception E1 is safely ignored. Exception E2 will be dealt with by a mathematical device: replacing T by Tp – Tm

where Tp ,Tm ≥0. It is intended that the simplex method will select only one of Tp and Tm as a basis variable. Exception E3,
the integer restriction, prohibits application of the simplex method; however, as an approximation, the integer restrictions can
be ignored, and the problem solved in continuous space. The resulting solution can then be rounded to place them in the
integer domain, and adjusted to ensure the constraints are met. This intuitive (but often inappropriate) approach can be used,
if nothing else, to bound the possible solution space. The simplex method reliably solves this non-integer problem and has the
nice feature of placing a lower bound on the value of W. With the integer constraint relaxed, the problem yields a form that
can be solved by the simplex algorithm:

0,,,

)(

}1,1,0{forthatsuch

:minimize

≥

+≥+−+
≤+

−=
=

WGTT

wtWTTkG

tTkG

pk

Wf(T,G,W)

mp

kkmp

k

K

(4)

2. Integer Methods
It is well-known that adaptively adding additional constraints (known as cutting planes) will force standard solution

methods to produce integer results12. The application of cutting planes can be used to solve the optimization problem with
the integer constraints enforced. A cutting plane is simply an additional constraint that reduces the continuous feasible space
without removing any discrete points from the feasible set. The dual simplex method is applicable to (4), because it is well-
suited to the adaptive application of cutting planes (additional constraints) to solve the integer problem. (The Simplex method
is not amenable to the addition of constraints during the algorithm execution.)

3. Convex Hull and Non-Binding Constraint Removal
In the context of the simplex method and the dual simplex method with cutting planes in the integer case, it is desired to

have as few constraints as possible in order to reduce the computational complexity. We now show how some constraints can
be removed without affecting the solution to the optimization problem.

Consider the lower line t=kG+T in Figure 4. Notice that it passes directly through one of the points defining a pulse
leading edge. If it did not, obviously W could be reduced by raising the line until it did pass though one the of the leading
edge points. Likewise, it can be shown that the line t=kG+T+W must also pass through at least one of the trailing edge points
to be a candidate for optimality. We say that t=kG+T is tangent to the set {tk}, and t=kG+T+W is tangent to the set {tk+wk}.
Furthermore, it can be observed that there are some leading edge points (e.g. t1 in Figure 4) for which it is impossible for the
line t=kG+T to pass though while adhering to the constraints imposed by their neighbors. In general, only those leading edge
points that belong to the lower convex hull of the set {tk} need be considered in the constraint inequalities. Also, only those
trailing edge points that belong to the upper convex hull of the set {tk+wk} need be considered in the constraint inequalities.

To show how a particular point may be eliminated as a constraint, consider three (possibly non-sequential) leading edge
points, ta, tb, and tc, where a < b < c. Here we show the conditions under which, if the constraints for ta and tc are met, the
constraint for tb must also be met, and thus may no longer need be considered. The constraint inequalities for ta, tb, and tc are,
respectively:

c

b

a

tTcG

tTbG

tTaG

≤+
≤+
≤+

(5)

By assumption, the first and third constraints in (5) will be made as strict as possible, by making them equalities, which are
then solved for G and T (integer restrictions relaxed):

ac

atct
T

ac

tt
G

tTcG

tTaG

ca

ac

c

a

−
−=

−
−=

⇒

=+

=+

(6)

Using the right-hand side of (6) in the second constraint btTbG ≤+ shows that the second constraint is guaranteed to be met

when:

)()()(acttabtbc bca −≤−+− (7)

If (7) holds, the constraint associated with tb is non-binding and may be ignored. A similar conjecture for the pulse trailing
edges will show that the constraint associated with (tb+wb) is non-binding when:

))(())(())((acwtwtabwtbc bbccaa −+≥+−++− (8)

By repeatedly applying conditions (7) and (8) to the given data it is possible to remove all non-binding constraints. This
constraint removal is, in effect, removing points which are not part of the convex hull and in most realistic cases results in a
significant reduction in the number of constraints.

4. Unimodal Method
In this subsection we show that it is possible to develop a very efficient solution to this integer linear programming

problem that is not based on standard, general purpose linear programming methods. We start by fixing G to some constant
value, an integer. As stated above, the line t = kG +T must pass though at least one of the leading edge points. If it did not,
then W could be reduced by incrementing T until the line did pass through one of the leading edge points. From this, we find
that if G is fixed, then T can be chosen such that this condition holds. In fact, it leads to this equation for selecting T, given G:

[]kGtT k
k

−= min (9)

A similar argument shows that for fixed G and T, W can be optimally chosen as:

[])()(max TkGwtW kk
k

+−+= (10)

Note that in (9) and (10), if G is an integer, then so are T and W (since tk and wk are integers). Now it's a matter of finding the
value of G that minimizes W. It may well be computationally possible to evaluate W for a large number of values of G: for
each G value (9) is solved for T and then substituted into (10) which is then solved for W. However, it is possible to do even
better than that.

It can easily be seen that W as a function of G is unimodal – where T is considered to take on its optimal value for each G
as defined in (9). This arises from (4) as follows. Imagine the three dimensional space with axes W, G, and T. The first
constraint in (4) specifies a series of vertical planes (i.e., parallel to the W axis) and Figure 5 shows the intersection of these
constraint planes with the G-T plane; the shaded area identifies the region satisfying these constraints. From our previous
considerations we know that the solution must lie on one of the lines forming the constraint region. The second constraint in
(4) places a series of tilted planes above the plane shown in Figure 5, each of which has a slope of –1 with respect to the T
axis and the kth plane has a slope of –k with respect to the G axis. The conglomeration of these constraints plane creates a
convex downward surface. Thus, W as a function of G is the values on this convex downward surface as traversed along the
conglomeration of the constraint lines in Figure 5, which creates a unimodal function with a single minimum.

A property of a unimodal function is:

))(minimzes(then,)()()(if 3
*

1321321 xfxxxxxxxxfxfxf *<<<<<> (11)

Thus, if a local minimum is located, it will be the global minimum. Various well-known algorithms (such as bisection
method, golden section search, etc.) can now be used to solve the optimization problem.

There are several different methods that can be used to select the initial trial value for G. The non-integer simplex
method may be used. This tends to locate the optimal value for G within a fraction, but the method is complicated. (This
method also places a lower bound on W). A least-square fit to the slope of the leading edge sample points may be used to
estimate G. The method is simple, but may require more trials to reach the optimal G. A simple slope calculation between the
leading edges of the first and last pulse may also be useful.

T

G k=0

k=1

k=2

k=3

t0

t1, t2, t3,… tp

W axis
(points out of page)

Figure 5: Example of constraints in the T-G plane

Our so-called unimodal method (called this because it relies on the fact that W is a unimodal function of G) thus consists
of finding an initial estimate for G using any one of the methods mentioned and then iteratively refining it by using (9) and
(10). Specifically, it consists of getting an initial estimate of G (call it G1) , and then incrementing it by one to get another
estimate G2 = G1 + 1, solving (9) and (10) for each of these G estimates to get W1 and W2, from this information the
unimodality can be used to determine the direction to the minimum of W(G); G is then incremented in unit steps until W(G) –
checked using (9) and (10) – starts to increase, at which point the optimal G, T, and W have been found. The efficiency of
this method depends on the accuracy of the initial estimate of G.

5. Comparison of Methods
To evaluate the performance of the optimization approaches discussed above, each was implemented in Matlab. Several

variants of the simplex and the dual simplex methods were tried, as well as the unimodal method. Except for cases where the
integer constraints were relaxed, all produced the correct result, when a result was produced. (Some convergence problems
were encountered with large matrices, which will be discussed below.) Here is a description of each of the methods tested:

Simplex: A standard implementation of the simplex method, with integer constraints relaxed. For “less than or equal to”
inequalities, a slack variable was used, and for “greater than or equal to” inequalities, an excess and an artificial variable were
used. All problem constraints (except the integer constraints) were explicitly implemented.
Simplex-Hull: As above, a standard implementation of the simplex method, with integer constraints relaxed. A convex hull
algorithm was used to removed the non-binding constraints in order to simplify the computations.
Dual: This used the dual simplex method. All “greater than or equal to” inequality constraints were converted to “less than or
equal to” inequalities, and the problem solved from outside the feasible solution space. Integer constraints were relaxed.
Dual-Hull - This used the dual simplex method also, but non-binding constraints were removed prior to setting up the
constraint matrix. Integer constraints were relaxed.

Dual-Hull-Cut: This used the dual simplex method with non-binding constraints removed. Cutting planes were dynamically
added to the constraint matrix as the problem was solved to enforce the integer constraints.
Unimodal Method: This implemented the min/max approach by first choosing a value of G and then finding the associated
optimal values for T and W. A simple iterative line search method (constant unity step size) was used to locate the optimal
value of G. The initial value for G was selected by computing the slope between the first and last leading edge points, and
rounding.

Table 1 shows various performance metrics of each method described above. It should be noted that the execution times
should be interpreted on a relative basis since MATLAB programs that contain loop are notorious for long run times
compared to what is possible using other programming languages. For each method, tests were run at a variety of pulse
counts, and the leading and trailing edge times determined by randomly perturbed uniformly spaced times (in order to
simulate the effect of errors in estimating pulse edge times). The performance measures (except for “Fail Count”) in each row
of the table are obtained by averaging over the 1000 trials. Figure 6 shows the execution times plotted against the pulse
count for the six methods; it is important to note the slow growth of execution time for the unimodal method developed here,
making it the most applicable in real-time, large pulse-count applications.

Clearly, the superior performer is the unimodal method, which is not only fast, but simple to implement. However, there
are some interesting insights provided by the other methods. It is an obvious advantage to remove as many non-binding
constraints as possible. For a large number of pulses, solutions using the convex-hull constraint removal technique out-
performed the otherwise equivalent methods by two orders of magnitude. Note that the non-cut convex-hull methods
significantly reduce the number of constraints and that as the number of pulses increases the number of constraints increases
only negligibly.

Comparing the simplex method and the dual-simplex method, the latter seems to have some advantages. For larger pulse
counts, the execution times tended to be shorter than the simplex method. However, the iteration counts were far lower than
for the simplex method. This seems to be an inconsistency; a higher correlation between the iteration count and execution
time was expected. Perhaps there is significant overhead in constructing the initial tableau. In any case, the dual-simplex
method is preferred over the simplex method for three reasons:

1. The dual-simplex method has reduced complexity, as artificial variables are not required (for this problem, since
there are no equalities).

2. The dual-simplex method reaches a solution in fewer iterations than the simplex method (for this constraint-heavy
application)

3. It is well-suited for the dynamic addition of constraints, to solve the integer problem using cutting planes.

However, both the simplex and dual-simplex methods are highly susceptible to limited numerical precision problems. It was
originally the intent to perform additional tests using an even larger number of pulses, but both methods began breaking
down. It should be noted, however, that no concerted attempt was made to address precision difficulties in the Matlab
implementation. The addition of constraints during the integer solutions aggravated the precision problem. The unimodal
method is not expected to exhibit problems at higher pulse counts.

In this study, advantages and limitations of several standard methods for solving linear programs were brought to light.
Ironically, it was an ad hoc method that was found to be superior, showing that standard methods, while providing a good
basis for theory and comparison, leave room for innovative solutions.

5. CONCLUSIONS
We have revisited the pulse gating issue that is embedded in a data compression scheme recently proposed for

compressing intercepted radar pulse trains. The original formulation of the pulse gating problem led to a situation that
required a large amount of side information to be coded but no clear method was available to efficiently code this side
information. However, an empirical entropy calculation estimated that in theory it could be coded with 2p+16 bits, where p
is the number of pulses in the pulse train. The goal in this paper was not to find an efficient way to code this side
information, but rather to reformulate the pulse gating problem to yield side information that yields to simple, yet efficient
coding schemes. We reformulated the pulse gating problem to be constrained to have a fixed gate width W as well as a fixed
gate interval G; an initial gate offset T was introduced to yield a more efficient gating scheme. By doing this we were able to
show that the side information can be coded using no more than 2p+32 bits, where the extra 16 bits over the previous
estimated side information size is negligible. The problem then is to optimally choose the gating parameters W, G, and T.

Table 1: Performance Metrics for Tested Methods

Method
Pulse

Count

Execution
Time, avg.
(seconds)

Number of
Iterations‡,

avg.

Number of
Constraints§,

avg.
Fail

Count**

5 0.004180 7.8 10.0
10 0.010710 13.8 20.0
25 0.046733 29.8 50.0
50 0.471090 55.3 100.0

Simplex

100 3.435210 106.5 200.0

5 0.006700 5.8 6.1
10 0.008680 7.3 7.7
25 0.014000 9.3 9.6
50 0.021150 10.6 11.1

Simplex-Hull

100 0.034050 12.2 12.6

5 0.009340 5.9 10.0
10 0.018670 6.7 20.0
25 0.073600 7.2 50.0
50 0.256400 7.6 100.0

Dual

100 1.266250 7.7 200.0

5 0.007190 5.9 6.2
10 0.009840 6.6 7.6
25 0.015100 7.3 9.6
50 0.021860 7.6 11.1

Dual-Hull

100 0.033340 7.8 12.6

5 0.009560 7.0 7.2
10 0.015100 9.5 10.2
25 0.060910 20.1 19.6
50 0.347812 43.6 37.7 8

Dual-Hull-Cut

100 6.781081 101.3 78.8 326

5 0.000390 8.7 N/A
10 0.000270 5.6 N/A
25 0.000270 3.6 N/A
50 0.000280 3.0 N/A

Unimodal

100 0.000330 3.0 N/A

‡ For simplex and dual simplex methods, the iteration count is the number of tableaus generated after the initial formulation.
For the unimodal method, it is the number of values of G for which the objective function was evaluated during the line
search.
§ This is the final number of constraints defined in the tableaus. For the integer (cutting-plane) implementation, it includes the
additional constraints added during the solving.
** The Fail count is the number of times (of the 1000 trails) in which the dual-simplex method failed to converge, due to
numerical round-off; no entry listed when count was zero.

0 20 40 60 80 100
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Number of Pulses

E
xe

cu
tio

n
T

im
e

(s
ec

)

Unimodal

Simplex-Hull

Dual-Hull

Dual
Simplex

Dual-Hull-Cut

Figure 6: Plot of Execution Time vs. Number of Pulses for Various Methods

We have shown that the pulse gating selection problem can be expressed as an integer linear programming problem. If
the integer constraints are relaxed, then the simplex method or dual simplex method can be used to solve it. Otherwise, the
dual simplex method in combination with plane-cutting techniques can be used. Both these methods are relatively complex,
and although many constraints can potentially be removed (the ones that don't lie in the convex hull), even simpler methods
are desired. We then developed a non-standard method. We showed how to effectively reduce the problem to a univariate
objective function. Although the new objective function was non-linear, it was unimodal, and solvable using simple, well-
known minimization techniques. Some methods for choosing the starting point for the search were suggested. Computer-
based tests showed that this unimodal method yielded a rapidly executing method whose execution time grew very slowly
with increasing pulse count, making it viable choice for real-time applications having large pulse counts.

6. REFERENCES
1. P. C. Chestnut, “Emitter location accuracy using TDOA and differential doppler ,” IEEE Trans. Aero. and Electronic

Systems, vol. AES-18, pp. 214-218, March 1982.
2. S. Stein, “Differential delay/doppler ML estimation with unknown signals,” IEEE Trans. Sig. Proc., vol. 41, pp. 2717 -

2719, August 1993.
3. S. Stein, “Algorithms for ambiguity function processing,” IEEE Trans. Acoust., Speech, and Signal Processing, vol.

ASSP-29, pp. 588 - 599, June 1981.
4. D. J. Matthiesen and G. D. Miller, “Data transfer minimization for coherent passive location systems,” Report No. ESD-

TR-81-129, Air Force Project No. 4110, June 1981.
5. G. Desjardins, “TDOA/FDOA technique for locating a transmitter,” US Patent #5,570,099 issued Oct. 29, 1996, held by

Lockheed Martin.
6. M. L. Fowler, “Coarse quantization for data compression in coherent location systems,” IEEE Trans. Aero. and Electr.

Systems, vol. 36, no. 4, pp. 1269 – 1278, Oct. 2000.

7. M. L. Fowler, “Data compression for TDOA/DD-based location system,” US Patent #5,991,454 issued Nov. 23, 1999,
held by Lockheed Martin.

8. M. L. Fowler, “Data compression for emitter location systems,” Conference on Information Sciences and Systems,
Princeton University, March 15-17, 2000, pp. WA7b-14 – WA7b-19.

9. M. L. Fowler, “Decimation vs. quantization for data compression in TDOA systems,” in Mathematics and Applications
of Data/Image Coding, Compression, and Encryption III, Mark S. Schmalz, Editor, Proceedings of SPIE Vol. 4122, pp.
56 – 67, San Diego, CA, July 30 – August 4, 2000.

10. M. L. Fowler, “Data compression via pulse-to-pulse redundancy for radar emitter location,” in Mathematics and
Applications of Data/Image Coding, Compression, and Encryption IV, Mark S. Schmalz, Editor, Proceedings of SPIE
Vol. 4475, San Diego, CA, July 29 – August 3, 2001, pp. 1 –12.

11. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, San Diego, CA: Academic Press, 1981.
12. L. R. Foulds, Combinatorial Optimization for Undergraduates, New York: Springer-Verlag, 1984.

