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Abstract—Sensor networks and other multi-sensor systems
collect data upon which estimations are based. How a particular
sensor’s data is to be used within the sensor system depends on
the quality of that sensor’s data relative to the other sensor’s
data. Because Fisher information (FI) is a natural way to assess
the quality of a sensor’s data, it is desirable to be able to
numerically compute the FI for a collected set of data for a
specific estimation task. We explore this issue for the specific
scenario of FI-driven data compression for a sensor system
tasked with estimating an RF emitter’s location. The data
compression scheme uses sub-band coding and therefore for FI-
driven data compression it is important to numerically assess the
FI of each filter bank output sample. However, as we
demonstrate, an orthogonal filter bank well-suited to the
compression task seems ill-suited to the FI-assessment task.
Alternatively we demonstrate that the STFT is well-suited to FI-
assessment but — as is well known — is ill-suited to the
compression task. This leads to a hybrid structure for the sub-
band coding scheme that uses the STFT for time-frequency
domain assessment of the FI but retains the orthogonal filter
bank for the compression processing.

Index Terms— Fisher Information, Data Compression, Filter
Banks, TDOA/FDOA Emitter Location

I. INTRODUCTION

Sensor networks and other sensor systems collect data upon
which estimations are based. How a particular sensor’s

data is to be used within the sensor system depends on the
quality of that sensor’s data relative to the other sensor’s data.
Because Fisher information (FI) is a natural way to assess the
quality of a sensor’s data, the FI can be used to determine: (i)
how to compress to optimally share the data, (ii) how to
choose a subset of sensors, (iii) how to choose the sensor
trajectory, etc. Thus, in all of these cases it is desirable to be
able to numerically compute the FI for a specific estimation
task from the collected data.

We explore this issue for the specific scenario of FI-driven
data compression for a sensor system tasked with estimating
an RF emitter’s location via TDOA/FDOA methods [1],[2];
“TDOA” = Time-Difference-of-Arrival and “FDOA” =
Frequency-Difference-of-Arrival The data compression
scheme uses sub-band coding and therefore for FI-driven data
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compression it is important to numerically assess the
contribution to the FI from each filter bank output sample.
However, as we demonstrate, an orthogonal filter bank well-
suited to the compression task seems ill-suited to the FI-
assessment task. Alternatively we demonstrate that the STFT
is well-suited to Fl-assessment but — as is well known — is ill-
suited to the compression task. This leads to a hybrid
structure for the sub-band coding scheme that uses the STFT
for time-frequency domain assessment of the FI but retains the
orthogonal filter bank for the compression processing.

II. PROBLEM SET-UP

Let noisy measurement vector x be the set of data collected
at a sensor to support the estimation of the parameters &, i = 1,
2, ..., p. The data vector x can be represented as

x=s(0)+n, (1)

where vector s(0) holds samples complex-valued s[#;0] for the
unknown signal that depends on unknown parameter vector 6
to be estimated, and n is a vector of complex white Gaussian
measurement noise values with variance o°. The
TDOA/FDOA parameters can be estimated from signal data
collected by pairs of sensors [2] and the TDOA/FDOA
estimates are then used to estimate the location of the emitter
[1].

For simplicity consider estimating the 2-D location of an

emitter; let the location be X =[xe,ye]T and consider that

there are K pairs of sensors available. Within each pair one
sensor shares its intercepted data with the other to enable

estimation of the TDOA/FDOA for the pair [2]. Thus we
have the K TDOA/FDOA measurements
7| | Srooai(X) | | wy,
0= = + S i=1,2,...,K,
vi | | frpoai(®) | | wy

i

where the function f750,4,(x) maps the location into the TDOA
value for sensor pair 7, the function frpo4 (X) maps the location

into the FDOA value for sensor pair i, and w, and W, are the

random TDOA and FDOA measurement errors at the i pair
of sensors, respectively. Because the TDOA/FDOA estimates
are obtained using the maximum likelihood (ML) estimator of
cross correlation [2], the asymptotic properties of ML
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estimators says that [w,,w,] follows the Gaussian

distribution N (O,J,'_l), where J; is the 2x2 Fisher

information matrix for the i TDOA/FDOA pair. The Jj,
element of the TDOA/FDOA FIM is the Fisher information
relative to the TDOA estimate, the J,, element of the
TDOA/FDOA FIM is the Fisher information relative to the
FDOA estimate, and the J;, = J,; elements are the cross-FI
between the two estimates. This matrix captures the quality of
the data in (1) relative to the task of estimating TDOA/FDOA.
If the noise at the two sensors in the /™ sensor pair is
independent then J; = J;; + J,, where J;; and J;, are Fisher
information matrices independently computed from the two
sensors in the pair. If s;(0) is the signal vector from the jt
sensor in the /™ pair, then
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which is the /" pair’s Jacobian matrix [1], the impact of data
quality on the location estimate quality can be characterized
through

K
Jgeo = ZG;FJiGi . 3)

i=l1

As we have shown in [5], a viable approach to optimizing data
compression with respect to geo-location is to compress to
maximize the trace of Ju,. However, the trace of FIM J,,
depends on the off-diagonal elements of the TDOA/FDOA
FIM as the following shows. For notational purposes let G,
be the k/ element in matrix G; and similarly let J;;; be the &/
element in matrix J;. Then

K
2 2 2 2
= DG + Gy +(Gia +Gian) o
=l , (4
+2(G; 1161 +Gi 126G )i 12

Tr {J geo }

where the first two terms in the sum depend on the diagonal
elements of the TDOA/FDOA FIMs but the last term depends
on the off-diagonal elements. Thus, the measure defined in
(4) captures how (i) data compression, (ii) sensor selection,

(iii) sensor trajectory, etc. all combine to impact the
performance of the location estimate — thus, optimization
should be done relative to (4).

III. NUMERICALLY EVALUATING THE FIM FROM DATA

The Fisher information measures how much information is
available from the observation x relevant to estimation of
parameters 0;, i = 1, 2, ..., p. The result given in (2) requires
knowledge of the signal and analytical results for the
derivatives. = However, in [3] we explored using data-
evaluated versions of the Fisher information for single
parameter cases. For example, in TDOA-only location, the
contribution to the data-evaluated FI for TDOA estimation
from the »™ DFT coefficient X[n] of the observed data a single
sensor is

N2 27%k2 | XTk]
JTDO4 = —_— 3)
k=—N/2 o

|2

where &2 is the known variance of the sensor noise. Each
quantity in (5) can then be used as a measure of the quality of
that DFT coefficient for estimating TDOA. The measure in
(5) can be used to implement a data-adaptive compression
scheme that minimizes the impact on TDOA accuracy for a
given data rate constraint [3]. Similarly we have explored

using
N{2-1 27[2112|)c[n]|2
Jrpoa= Y, — 5 (6)
n=-N/2 o

as the data-evaluated FI for optimizing compression with
respect to FDOA estimation accuracy.

Extending this idea, in [4] we showed how compression
trade-offs for joint TDOA/FDOA estimation can be
accomplished by optimizing the compression with respect to
oJmpos (1 — a)Jrpos, Where o controls the relative
importance between TDOA and FDOA. As argued in [4], this
motivates using a time-frequency decomposition such as a
filter bank to gain joint access to the time and frequency
characteristics of the signal. However, in this case it becomes
more challenging to numerically compute the FIMs diagonal
elements because such time-frequency representations lack the
mathematical characteristics with respect to derivatives that
are used to derive results like (5) and (6). Thus, in principle it
is possible to write a mathematical equation for the filter bank
samples and then consider the derivatives with respect to
parameters, as needed for the FIM; but this approach is
intractable.

Nonetheless it was demonstrated that it is possible to get
good results using standard ON wavelet packet filter banks,
for which each channel in the filter bank has both positive and
negative frequency content (so-called “two-sided” filter
banks; “one-sided” filter banks have separate channels for
positive and negative frequencies). Such filter banks are
satisfactory for computing (5) and (6) in terms of time-
frequency components because of the inherent negative-
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positive frequency symmetry due to the &* term. For example,
let Si[n k] be the time-frequency (T-F) representation of the
signal s,[n] from such a filter bank. Then instead of (5) and
(6) we can use

| N2 K2
J1poa =—5 >3 Rlsin k]| @)
Ol n=—N/2 k=0
and
| N2 K2
In=— X skl ®)
O1 n=—N/2k=0

where £ is the index of two-sided channels.

However, as shown in Section II, for emitter location
processing we also need the cross-term elements of the
TDOA/FDOA FI matrix (FIM) and we wish to assess the
FIM-quality of the output samples of the filter bank.  As
above, finding an analytical result for the FIM elements is
intractable. Also, as we will see below, two-sided channels in
the filter bank are not consistent with computing the cross-
terms in the FIM.

The derivation of (5) makes use of the property that the
Fourier transform of a time derivative gives the frequency
variable times the Fourier transform; since there are two such
terms multiplied (one conjugated) we get the squared-
frequency dependence shown in (5). That squared
dependence is what allows use of two-sided filter banks when
computing the diagonal elements of the FIM. However,
following the same mathematical development would lead to
the cross-term in the FIM looking like

N/2-1 N/2-1 N
J12~Re{ > Y kmnlx [k],}. ©)

n=—N/2k=-N/2

From this we see that there is no frequency symmetry in (9)
and therefore two-sided filter banks are unsuitable for
evaluating this measure. Furthermore, recognizing *[n]X k]
as one particular time-frequency representation we resort to
the following brazen conjecture, verified through the testing
described below.

Brazen Conjecture: Let S)[n,k] be a time-frequency (T-F)
representation of the signal s[#]; e.g., the short-time Fourier
transform or a one-sided filter bank representation. It is
important that the frequency range of the T-F representation is
[-m, ] rad/sample, meaning that it explicitly shows separate
channels for positive and negative frequencies. Then the FIM
can be computed (up to a multiplicative factor) using:

| N2 K/2 X )
Jn=—7 > 2 SIS (10)
Ol n=—N/2 k=—K/2
N/2 K/2 5 2
I Y sl 1

51 n=—-N/2 k=—K/2

N/2 K/2

1
Jp=dn=—5 D D tfk |S1”k]|

01 n=—N/2 k=—K/2

(12)

where f; and ¢, are the frequency and time centers of the cells
of the time-frequency representation.

Our test results (see below) show that the choice of the T-F
representation has a significant impact on the accuracy of this
conjecture. To test this issue we needed a signal that would
impinge on each channel of the filter but for which it would
still be possible to analytically compute the FIM elements.
Then we could apply the filter bank and equations (10) — (12)
to numerically compute the FIM elements and then compare
the results to the analytically derived theoretical results for
this signal.

A good choice for this signal is a linear chirp signal. We
now derive the FIM for such a signal, and for simplicity
assume unit variance noise. Let the received C-T signal be

r(t)=s(+ 1)ejw +w(?) so that after sampling at intervals of
T we have
nl=s(nT +1)e’""T +w(nT) (13)
| —

—s
where the arrow notation means that samples of the indicated
signal go into a signal vector called s. Then the partial

derivatives of this signal vector w.r.t. the TDOA/FDOA
parameters are given by

ﬁ: /T Os(nT +71)

or or (14)
and |
aa_i =| jnTe’ V"T.s(nT +7) (15)
The elements of the FIM are given by
=2 Y L e
I = 2{2—375—3 = 2%:(nT)ZIS(nT)I2 (17)
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ov or

=2Re} Y — jnTs" (nT)5(nT)

n

(18)

Let the signal be a complex linear chirp signal given by
s(1) = e/9 @/ D
so that we get
s(nT) = ]'cn1TeJ¢ej(0‘/2)(”T)2 = jonTs(nT)

Using this with (16) — (18) gives

. . 2
Jee =23 |5 =23 |janTe be i@/ D0’
n n
= 2(aT)ZZ:n2
n
Joy =23 (T |s(nT)|’
n
=27%) n?
n
Jy, = 2Re{2— jnTs" (nT)( janTs(nT))}
n
= 20:T22n2
n
or in matrix form
az [04
J:[ZTZZnZJ[ 1 (19)
n (04 1

where T is the sampling interval used to sample the chirp
signal. From this result we see that J), is a constant with
respect to o, so we can look at the other terms relative to this
term: Jy;/Jyn = o2 and Jyy/ 9 = 0.

The two-sided filter bank based on wavelet packets that was
used in [4] was extended to a one-sided ON filter bank as

follows. It can be shown that starting with a standard half-
band lowpass filter for a two-sided ON filter bank (e.g.,
standard ON wavelet lowpass filter) and then modulating it up
by m/2 rad/sample gives a go[#] that will generate a one-sided
two-channel ON filter bank by using the relationships shown
in Figure 1, where the g,[n] are the two-channel prototypes for
a cascaded analysis filter bank, and /,{#n] are the two-channel
prototypes for the cascaded synthesis filter bank.

Plots of the numerical and theoretical FIM results for the
case of using such a complex orthogonal filter bank are shown
in Figure 2, where it is seen that the numerical results are not
very accurate: in the top plot the numerical results should be a
constant (as stated by the theory), in the middle plot the
numerical results should follow the theoretical curve of o
from (19) and in the bottom plot the numerical results should
follow the theoretical curve of a from (19).
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Figure 1: Relationships between the filters for complex PR
filter banks.

To demonstrate that it is at least possible to evaluate the
FIM from signal data, the short-time Fourier transform
(STFT) was investigated as a replacement for the complex-
valued orthogonal PR filter bank. The results obtained are
given in Figure 3; notice that the numerical results match the
theoretical results. Although the STFT enables quite accurate
evaluation of the FIM, the STFT is not well-suited for
compression due to the fact that it is not an orthogonal
representation. Thus, we use it simply as an auxiliary parallel
mechanism to allow evaluation of the FIM for bit allocation to
the complex orthogonal PR filter bank, as shown in Figure 4.
Each sample coming out of the filter bank represents a known
time-frequency region and the FIM elements can be evaluated
over this time-frequency region using the STFT to provide the
FIM evaluation for the filter bank sample.
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Figure 2: Quality of Numerical Evaluation of FIM via
Classical Filter Bank
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Figure 3: Quality of Numerical Evaluation of FIM via
STFT
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Figure 4: Our compression framework using parallel
auxiliary STFT processing to evaluate the FIM elements.

IV. CONCLUSIONS

Estimation processing within sensor systems can be
optimized by considering the FIM-based measure. However,
evaluating this measure from collected data can be
challenging. We have demonstrated how it is possible to use
the STFT to numerically evaluate the FIM for the task of
emitter location and have demonstrated the usefulness of this
to developing a task-optimal data compression scheme. This
has further ramifications in more grand schemes of optimizing
with respect to sensor selection, sensor trajectory, etc.

We have demonstrated that one particular one-sided
complex ON perfect reconstruction filter bank performs
poorly when used to evaluate the FIM elements needed to
assess the filter bank’s various output samples. Some
interesting questions arise. Is there a fundamental prohibition
against complex ON filter banks performing well for the
purpose of computing FIM elements? What are the general
conditions needed on a filter bank to ensure it performs well
for the purpose of computing FIM elements? These are open
questions we hope to address in the future.
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