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Finding the Transfer Function from Differential EQ.

Recall: we found a DT system’s Transfer Function H(z) by taking the ZT of the
Difference Eq. For a CT system we do the same kind if thing by taking the LT of

the Differential EQ:
a, Yy (t) +---+a,y(t) +a, y(t) = b, XM (1) +... + b X(t) + by x(t)

LT {a, y™ () +--+a,y(t) + 2,y (1)}

ZT > = LT {bm x(M)(t)+...+b1>'<(t)+boX(t)}

Y (s)| ays" +--+as+a, |

= X(s)| by s" +...+bs+by |

So... can just

M write H(s) by
b,S" +..+bS+Db, }X(s) L

Y(s)= v inspection of
dyS + -+ aS+4d, D.E. coefficients! /

& H(s) J ‘2/14




Finding the Transfer Function from the Circuit
Can find the freq. resp. of a circuit using impedance in terms of jo.
Now generalize: to find the TF... the complex variable s replaces jo:
e Use s-variable impedances: Z-(s) =1/Cs  Z/(s) = Ls
» Replace input source time function symbol x(t) by LT symbol X(s)
* Analyze circuit to find Y(s)... thing that multiplies X(s) is T.F. H(s)

Example:

MM VYTV . o+ A VTNV o 4
X(t) R L
| Y (s)

~) % v =

|
ID—‘}—!
I

For this circuit the easiest approach is to use the Voltage Divider

1/Cs _ 1/LC }X
e {R+ Ls+(1/Cs)}X(S) — {82 +(R/L)s+(1/LC) )

~—

——

H (s)

A “standard” form: a ratio of two polynomials in s
» W/ unity coeff. on the highest power in the denom.




Poles and Zeros of Transfer Function

by,s" +..+bs+b, B(s)

SN eras+a,  A®S)

Can always normalize
this coeff. to 1

H(s) =

Assume there are no common roots in the numerator B(s) and denominator A(S).

(If not, assume they’ve been cancelled and redefine B(s) and A(s) accordingly)

Poles of H(s): The values on the complex s-plane where |H(S)| —

Zeros of H(s): The values on the complex s-plane where |[H(s)| =0

The roots of the denominator polynomial A(s) determine N poles.

The roots of the Numerator polynomial B(s) determine M zeros.

— bM (S B 21)(3 B Zz)---(s —Zy )

H(s) =
(S_ pl)(s_ pz)---(s_ pN)




Example: Finding Poles and Zeros

V() +6y(t) +10y(t) +8y(t) = 2X(t) + 12x(t) + 20x(t) { Conjugate ]

A 4

2s° +125+20  2(s+3-j)(s+3+])
$®+6s°+10s+8 (s+4)(s+1-j)(s+1+j)

@

Using MATLAB:
>> roots([2 12 20])
>> roots([1 6 10 8])

H(s)=

=

Pole-Zero Plot for this H(s)

A ja)
s - plane
x—+ 1

X1 -1 O"

zeros: s=-3+1 |
poles: s=-4, s=-1+ |

| Conjugate \
Pair

X denotes a pole

o denotes a zero




Impulse Response of System

Sometimes looking at how a system responds to the impulse function (i.e.,
delta function) o(t) can tell much about a system. Hitting a system with o(t) is
lot like ringing a bell to hear how it sounds...

Note: If system is causal, then | 4
I 5(»[) {h(t):Ofort<O w} h(t)
[cTo : /\ t

ICs=0

' The symbol h(t) means :‘the
Impulse response”.

Noting that the LT of 3(t) = 1 and using the properties of the transfer function
and the LT transform:

h(t) = £ {H(s)2{o@)}}  |h(t) =L {H(s)] h(t)=F " {H(w)}
. . B(s)
From PFE and Poles/Zeros we see that a TF like this: H(s) = m

h(t) = ke™u(t) + k,e™u(t) +---+k,e™u(t)

assumptions
made here!

...will have an impulse response with terms like this: T
{ Some simplifying }

We almost always want this to decay (like a bell!): all poles Re{p;} <0 ‘6,14



Stability of System

Definition: A system is said to be stable if its output will never grow without
bound when any bounded input signal is applied... and that seems like a good

thing!!!

Without going into all the details... a system with an impulse response that
decays “fast enough” is said to be stable.

From our exploration of the effect of poles on the impulse response we say that:

i s - plane For a Stable System
o xl1 © * Poles must be “in Left Half Plane”
= (I) T 1 e « Zeros can be anywhere
O
[ RLC circuits are always stable ]

be true... especially if there is feedback involved

[ But...Once you start including linear amplifiers with gain > 1 this may not
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Relationship: Transfer Function and Freqg. Resp.

Recall: CTFT = LT evaluated on jw axis... if jo axis is inside ROC

Fact: For causal systems jw axis is inside ROC if all poles are in LHP

H(w)=H (S)‘S:jw

If all poles are in LHP

Like freqz for DT frequency response...the MATLAB command fregs can be
used to compute the Frequency Response from the Transfer Function coefficients:

M
b,s" +...+bs+Db,

H(s) =

>>den = [a, ... & a]

a,s" +--+as+a,

/—\ must put any zero b, into the vector
>>num = [b, ... b by]

must put any zero a; into the vector

>> 0mega = -W_max: ?:W_maF;('Ck appropriate spacing

>> H = fregs(num, denom, omega)

>> plot(omega, abs(H))
>> plot(omega, angle(H))



From the Pole-Zero Plots we can Visualize the TF function on the s-plane:

Plot of |[H(s)| vs. s m
(i.e., plot of |[H(s)| over the s-plane) ||
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Fig. 9-4. Shape of elastic membrane for a pair of poles and a zero.
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From our Visualization of the TF function on the s-plane we can see the

Freq. Resp.:

To get the frequency
response H(w) from the
transfer function H(s) we
replace s by jw... this is
eraphically equivalent to
"cutting along the jw axis"

Plots from my favorite book on Op
Amps: "Operational Amplifier:
Characteristics and Applications' by
Robert G. Irvine, Prentice-Hall, 1981
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Fig. 9-5. Pole-zero diagram showing the east face.
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Can also look at a pole-zero plot and see the effects on Freq. Resp.

As the pole moves closer to the jo
axis it has a stronger effect on the
frequency response H(w). Poles
. P close to the jw axis will yield

| sharper and taller bumps in the
frequency response.

East face response

(a) Frequency response for pole close to if axi By being able to visualize what |H(s)|
will look like based on where the poles
and zeros are, an engineer gains the
ability to know what kind of transfer
function is needed to achieve a desired
frequency response... then through
accumulated knowledge of electronic
circuits (requires experience
accumulated AFTER graduation) the
engineer can devise a circuit that will
o o achieve the desired effect.

(b} Freauency response for pole far fram jf axis
Fig. 9-6, Frequency response versus pole location. 114

+ jw
|

s-plane [ |




Cascade of Systems

Suppose you have a “cascade” of two systems like this:

X(t) H,() y(t) H, (o) 2(t)
H,(s) H,(s)
Y(w)=H(0)X(0) Z(o)=H,(0)Y(®) |Z(®)=H,(o)H,(0)X(®)
Y (s) =H,(s)X(s) Z(s) =H,(s)Y (s) Z(s) =H,(s)H,(s)X(s)
»,

Thus, the overall frequency response/transfer function is the product of those
of each stage:

H o (@) = H (@) H, (@)
Htotal (S) — Hl(s) H 2 (S)

Obviously, this generalizes to a cascade of N systems:
H o (@) = H (0)H, (@) --- H\ (o)
Htotal (S) — Hl(s) HZ(S) -+ H N (S)




Continuous-Time System Relationships

Time Domain

dVy(t)
dtN

b

d"ty(t) dy(t)

taN- gtN-L

dMx(t) dM-1x(t)
+
dt™

+---+alT+aoy(t)=

by 1 ————=+---+ b —= +byx(t
M-1 dtM_l bl dt 0 ()

Freqg Domain

dx(t) H(s) =

szM +bM_1sM‘1+---+bls+b0

sN vay_sN T+ +as+ag

Differential

Inspection’in Practice

Equation

LT in Theory

Impulse
Response

h(t)

Fourier, Transform

Trans_fer — Pol_e-Zero
Function Diagram
S=]jw I
Frequency Circuit
Response Diagram

H (@) = H () ls- o

[ This Chart provides a “Roadmap” to the CT System Relationships!!! ;
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In practice you may need to start your work in any spot on this diagram...

1. From the differential equation you can get:

a.  Transfer function, then the impulse response, the pole-zero plot,
and if allowable you can get the frequency response

2. From the impulse response you can get:

a.  Transfer function, then the Diff. Eq., the pole-zero plot, and if
allowable you can get the frequency response

3. From the Transfer Function you can get:

a. Diff. Eq., the impulse response, the pole-zero plot, and if allowable
you can get the frequency response

4.  From the Frequency Response you can get:

a. Transfer function, then the Diff. Eq., the pole-zero plot, and the
Impulse response

5. From the Pole-Zero Plot you can get:

a. (up to ascaling factor) Transfer function, then the Diff. Eq., the
Impulse response, and possible the Frequency Response

6. From the Circuit Diagram you can get:

a.  Transfer function, then the Diff. Eq., the impulse response, and
possibly the Frequency Response

®..



