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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #34
• C-T Transfer Function and Frequency Response



Finding the Transfer Function from Differential Eq.
Recall: we found a DT system’s Transfer Function  H(z) by taking the ZT of the 
Difference Eq.  For a CT system we do the same kind if thing by taking the LT of 
the Differential Eq:
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So… can just 
write H(s) by 
inspection of 

D.E. coefficients!
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Finding the Transfer Function from the Circuit
Can find the freq. resp. of a circuit using impedance in terms of j.
Now generalize: to find the TF…  the complex variable s replaces j:

• Use s-variable impedances: ZC(s) = 1/Cs ZL(s) = Ls
• Replace input source time function symbol x(t)  by LT symbol X(s)
• Analyze circuit to find Y(s)… thing that multiplies X(s) is T.F.  H(s)
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For this circuit the easiest approach is to use the Voltage Divider
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• w/ unity coeff. on the highest power in the denom.  
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Poles and Zeros of Transfer Function
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Assume there are no common roots in the numerator B(s) and denominator A(s).  
(If not, assume they’ve been cancelled and redefine B(s) and A(s)  accordingly) 

Poles of H(s): The values on the complex s-plane where |H(s)| 

Zeros of H(s): The values on the complex s-plane where |H(s)| = 0

The roots of the denominator polynomial A(s) determine N poles.

The roots of the Numerator polynomial B(s) determine M zeros.

Can always normalize 
this coeff. to 1
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Conjugate 
PairUsing MATLAB:

>> roots([2 12 20])
>> roots([1 6 10 8])

Example: Finding Poles and Zeros
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x denotes a pole

o denotes a zero
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Pole-Zero Plot for this H(s)
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Impulse Response of System
Sometimes looking at how a system responds to the impulse function (i.e., 
delta function) (t) can tell much about a system.  Hitting a system with (t) is 
lot like ringing a bell to hear how it sounds…

Noting that the LT of (t) = 1 and using the properties of the transfer function 
and the LT transform:
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From PFE and Poles/Zeros we see that a TF like this: 

…will have an impulse response with terms like this:
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Some simplifying 

assumptions 
made here!

We almost always want this to decay (like a bell!): all poles Re{pi} < 0
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C-T LTI
ICs = 0

tt

(t)
h(t)Note: If system is causal, then 

h(t) = 0 for t < 0

The symbol h(t) means “the 
impulse response”.
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Stability of System
Definition: A system is said to be stable if its output will never grow without 
bound when any bounded input signal is applied… and that seems like a good 
thing!!!

Without going into all the details… a system with an impulse response that 
decays “fast enough” is said to be stable.

From our exploration of the effect of poles on the impulse response we say that: 

For a Stable System

• Poles must be “in Left Half Plane”

• Zeros can be anywhere
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RLC circuits are always stable

But…Once you start including linear amplifiers with gain > 1 this may not 
be true… especially if there is feedback involved
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Relationship: Transfer Function and Freq. Resp.
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Recall:  CTFT = LT evaluated on j axis… if j axis is inside ROC

Fact: For causal systems j axis is inside ROC if all poles are in LHP
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must put any zero bi into the vector

must put any zero ai into the vector

Like freqz for DT frequency response…the MATLAB command freqs can be 
used to compute the Frequency Response from the Transfer Function coefficients: 
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From the Pole-Zero Plots we can Visualize the TF function on the s-plane:
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From our Visualization of the TF function on the s-plane we can see the 
Freq. Resp.:
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As the pole moves closer to the j
axis it has a stronger effect on the 
frequency response H().  Poles 
close to the j axis will yield 
sharper and taller bumps in the 
frequency response. 

By being able to visualize what |H(s)| 
will look like based on where the poles 
and zeros are, an engineer gains the 
ability to know what kind of transfer 
function is needed to achieve a desired 
frequency response… then through 
accumulated knowledge of electronic 
circuits (requires experience 
accumulated AFTER graduation) the 
engineer can devise a circuit  that will 
achieve the desired effect.

Can also look at a pole-zero plot and see the effects on Freq. Resp.
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Cascade of Systems
Suppose you have a “cascade” of two systems like this:
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Thus, the overall frequency response/transfer function is the product of those 
of each stage:
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Obviously, this generalizes to a cascade of N systems:
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Differential
Equation

Transfer
Function

Frequency
Response

Impulse 
Response Fourier Transform

Inspection in Practice

Time Domain Freq Domain

Continuous-Time System Relationships
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LT in Theory
Pole-Zero 
Diagram

This Chart provides a “Roadmap” to the CT System Relationships!!!

Circuit 
Diagram
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1. From the differential equation you can get:
a. Transfer function, then the impulse response, the pole-zero plot, 

and if allowable you can get the frequency response
2. From the impulse response you can get:

a. Transfer function, then the Diff. Eq., the pole-zero plot, and if 
allowable you can get the frequency response

3. From the Transfer Function you can get:
a. Diff. Eq., the impulse response, the pole-zero plot, and if allowable 

you can get the frequency response
4. From the Frequency Response you can get:

a. Transfer function, then the Diff. Eq., the pole-zero plot, and the 
impulse response

5. From the Pole-Zero Plot you can get:
a. (up to a scaling factor) Transfer function, then the Diff. Eq., the 

impulse response, and possible the Frequency Response
6. From the Circuit Diagram you can get:

a. Transfer function, then the Diff. Eq., the impulse response, and 
possibly the Frequency Response

In practice you may need to start your work in any spot on this diagram…
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