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Ideal Filters
Often we have a scenario where part of the input signal’s spectrum comprises 
“what we want” and part comprises something we “do not want”.  We can use a 
filter to remove (or filter out) the “bad part”.

H()
( )x t ( )y t

Called “a Filter” in this case
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A filter that 
“passes” 

high 
frequencies 
is called a 

“high-pass 
filter”
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Case # 3:

A filter that “stops” middle 
frequencies is called a 

“band-stop filter”

Undesired Part

Case #4:

A filter that “passes” middle 
frequencies is called a 

“band-pass filter”
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What about the phase of an IDEAL filter’s H()?

Well…we could tolerate a small delay in the output so…

From the time-shift property of the FT then we need:
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we want “passed”
Want to get out the 

signal we want 
“passed”… but we can 
accept a “small” delay
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Thus we should treat the exponential term here as H(), so we have: 

Line of slope –td
“Linear Phase” 5/14



So… for an ideal low-pass filter (LPF) we have:
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Phase is undefined in stop band:
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i.e. phase is undefined 
for frequencies outside 

the ideal passband

Summary of Ideal Filters

1. Magnitude Response:

a. Constant in Passband

b. Zero in Stopband

2. Phase Response

a. Linear in Passband (negative slope = delay)

b. Undefined in Stopband
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)32cos()22cos(3)2cos(59)( ttttx  

H()

0 Hz 1 Hz 2 Hz 3 Hz

Filter has 
Non-Linear Phase

Filter has FLAT
Passband
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Point of this Example

A filter with an ideal magnitude response but non-
ideal phase response can still degrade a signal!!!

Example of the effect of a nonlinear phase but an ideal magnitude



Are Ideal Filters Realizable? (i.e., can we actually MAKE one?)
Sadly…  No!!

So… a big part of CT filter design focuses on how to get close to the ideal.

Can’t Get an Ideal Filter… Because they are Non-Causal!!!
For the ideal LPF we had 2( ) ( ) dj tH p e   



 2 sinc 2 / 2t  From the FT Table: 22 ( )p 

Now consider applying a delta function as its input:  x(t) = (t)   X() = 1

Then the output has FT 2( ) ( ) ( ) ( ) dj tY X H p e     
 

Linear Phase 
Imparts Delay

Ideal 
LPF

t

x(t) = (t) y(t)

t
Starts before input starts…  
Thus, system is non-causal!
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So the response to a delta (applied at t = 0) is:  ( ) ( / ) sinc ( / )( )dy t t t    



a logarithmic unit of measure for a ratio between two powersDecibel:
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Plotting Frequency Response of Practical Filters 
Although we’ve previously shown the plots of Freq. Resp. using the actual 
numerical values of |H()| it is VERY common to plot its decibel values.

P1/P2 

(non-dB)
P1/P2

(dB)
1000 = 103 30 dB

100 = 102 20 dB
10 = 101 10 dB

1 = 100 0 dB
0.1 = 10-1 –10 dB

0.01 = 10-2 –20 dB
0.001 = 10-3 –30 dB

P1/P2 = 2  ~ 3 dB
Another “Rule” to Know!!

P1/P2 = 1/2  ~ -3 dB

0 dB is “P ratio of 1”

10 dB is “P ratio of 10”
20 dB is “P ratio of 100”

30 dB is “P ratio of 1000”

-10 dB is “P ratio of 0.1”
-20 dB is “P ratio of 0.01”

-30 dB is “P ratio of 0.001”

Decibel Power Rules

Know 
These!
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But… |H()| relates Voltages (or current)… not POWER!!!

h(t)
H()

)cos( 0  tA ))(cos()( 000  HtHA 

Output voltage amplitude = A|H(0)|

Amplitude VoltageInput 
Amplitude VoltageOutput |)(| 0 H

Input voltage amplitude = A

Convert to Powers
Input Power = A2/2
Output Power = A2|H(0)|2/2
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In addition to using decibels for the |H()| it is also common to use a 
logarithmic scale for the frequency axis
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We may be just as interested in 0 – 1 kHz as we are in 1 – 10 kHz
─ But the linear axis plot has the 0 – 1 kHz region all “scrunched up”
─ However… the log axis allows us to expand out the lower 

frequencies to see them better! 

Linear Axis:

Log Axis:
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Simplest Real-World Lowpass Filter: RC Circuit

v(t) R C y(t) Output Signal
Input Signal

1. Convert capacitor into impedance:
Cj

Zc 
 1)(  Small impedance at high 

Large impedance at low 

xAe j 2. Imagine input as phasor:  

3.  Now analyze the circuit as if it were a DC circuit with a complex voltage 
in (the phasor) and complex resistors (the impedances):

R
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



Now find the output phasor 
as a function of the input 
phasor… the thing that 

multiplies the input phasor 
is ALWAYS the Freq Resp ! 
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Now… we can plot this
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RC=1.5915e-4;
f=0:10:10000;
H=1./(1 + j*2*pi*f*RC);
subplot(2,1,1)
plot(f,abs(H))
grid
xlabel('f (Hz)')
ylabel('|H(f)|')
subplot(2,1,2)
plot(f,angle(H))
grid
xlabel('f (Hz)')
ylabel('<H(f)')

Although these are “correct” plots… we usually prefer to use: 
• dB for the magnitude axis (but not the angle axis!)
• log axis (rather than linear) for the frequency axis

o But… keep in mind that when using a log axis a linear phase 
will NOT be a straight line!!!
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Instead… we can plot this using dB and log axes…

RC=1.5915e-4;
f=1:10:10000;
H=1./(1 + j*2*pi*f*RC);
subplot(2,1,1)
semilogx(f,20*log10(abs(H)))
grid
xlabel('f (Hz)')
ylabel('|H(f)|')
subplot(2,1,2)
semilogx(f,angle(H))
grid
xlabel('f (Hz)')
ylabel('<H(f)')
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Use 
“20” 
here!

Using log scale allows us to see 
that this filter is “quite flat” up 

to about 200 Hz! 


