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Ideal Filters

Often we have a scenario where part of the input signal’s spectrum comprises
“what we want” and part comprises something we “do not want”. We can use a
filter to remove (or filter out) the “bad part”.
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Case #2:
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Case # 3:
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Case #4-:
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What about the phase of an IDEAL filter’s H(w)?

Well...we could tolerate a small delay in the output so...

Put in thf s1gna1” X, (1) y(t)=x_ (t—t,)
we want “passed R H e
(@) Want to get out the
signal we want

“passed”... but we can
accept a “small” delay /

A

From the time-shift property of the FT then we need:

Y(w)=X,(w)e '

Thus we should treat the exponential term here as H(w), so we have:
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e




we have:

le ™ —_Q<w<Q
H(w) =

Ve

0, otherwise

H(w) = p,g (@)™

So... for an ideal low-pass filter (LPF)
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Phase is undefined in stop band:

0=0e'’

Summary of ldeal Filters
1. Magnitude Response:
a. Constant in Passband
b. Zero in Stopband
2. Phase Response
a. Linear in Passband (negative slope = delay)

b. Undefined in Stopband

£0="7

1.e. phase 1s undefined
for frequencies outside
the ideal passband




Example of the effect of a nonlinear phase but an ideal magnitude

0Hz 1Hz 2 Hz 3 Hz
X(t) =9 —5cos(2at) —3cos(272t) — cos(273t)

‘ y(t) =9—5cos(2nt - %) —3cos(272t — ) —cos(273t - %)
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Point of this Example

Figure 2: Filter's Frequency Response

A filter with an ideal magnitude response but non-
1deal phase response can still degrade a signal!!! q
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Are ldeal Filters Realizable? (i.e., can we actually MAKE one?)
Sadly... No!!

So... a big part of CT filter design focuses on how to get close to the ideal.

Can’t Get an Ideal Filter... Because they are Non-Causal!!!
For the ideal LPF we had H(w) = ng( a))e—ja)td

Now consider applying a delta function as its input: X(t) =0o(t) <> X(w) =1

.................
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From the FT Table: |2Q2sinc [2Qt / 277] > |27, (®) Imparts Delay

So the response to a delta (applied at t = 0) is: Y(t) = (€2/ 7)sinc [(Q/ )(t—t, ):

X(t) = o(t) y(t) /\
> e o

Ideal .
Starts before input starts...
Thus, system is non-causal!
8/14

LPF




Plotting Frequency Response of Practical Filters

Although we’ve previously shown the plots of Freq. Resp. using the actual
numerical values of |H(w)| it is VERY common to plot its decibel values.

Decibel: a logarithmic unit of measure for a ratio between two powers

P./P, P./P,

(mon-dB) | (dB) [Decibel Power Rules
1000 =10*|  30dB| 30 dB is “P ratio of 1000”
100 = 102 20dB| 20 dB is “P ratio of 100”

10 = 10! 10dB| 10 dB is “P ratio of 10”

1=10° 0dB| 0dBis“P ratio of 1”
0.1=10"| =10dB| -10dB is “P ratio of 0.1
0.01=102| =20dB| -20dB is “P ratio of 0.01”
0.001=10°| =30dB| -30dB is “P ratio of 0.001”

Another “Rule” to Know!!

P/P,=2 = ~3dB

P/P,=12 & ~-3dB
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But... |H(w)| relates Voltages (or current)... not POWER!!!

Acos(w,t +0) () A‘ H (a)o)‘ cos(a,t + 0+ LH(w,))

Input voltage amplitude = A Output voltage amplitude = A|H(aw,)| !

‘ H(w) = Output Voltage Amplitude
0 Input Voltage Amplitude

Convert to Powers , 5
Input Power = A%/2 101Og10( IDout) — IOIOgIOEA ‘H (a))‘ /2]
P

Output Power = A2[H(e,)[%/2 3 A’ /2

= 10log,, (\H (o))
=201log,, (|H (»)|)

) | 20 log,o(|H(@)) +—= Decibel value for |H(ay)
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In addition to using decibels for the |[H(w)| 1t is also common to use a
logarithmic scale for the frequency axis

Linear Axis: N R R
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\ J
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We may be just as interested in 0 — 1 kHz as we are in 1 — 10 kHz
— But the linear axis plot has the 0 — 1 kHz region all “scrunched up”
— However... the log axis allows us to expand out the lower
frequencies to see them better!
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Simplest Real-World Lowpass Filter: RC Circuit
Input Signal VMV T
V(t) (A R =C y(t) Output Signal

: : : 1 ' :
1. Convert capacitor into impedance: Z (w) = —— Small impedance at high o
JaC Large impedance at low @

2. Imagine input as phasor: Ael? =%

3. Now analyze the circuit as if it were a DC circuit with a complex voltage
in (the phasor) and complex resistors (the impedances):

Now find the output phasor
R . as a function of the input
T _ \/ phasor... the thing that
Ae™ =X C) 1/JaC y multiplies the input phasor
| o is ALWAY'S the Freq Resp ! /
Here...
_ L (o) 1 _ 1
o gD 5| __ x mmp (Ho)=|—
[\)/pl_tgge R+Z. (w) 1+ joRC 1+ JwRC
ivider.




Now... we can plot this

1
‘ | | | | | | | | RC=1.5915¢-4;
05l NG £=0:10:10000;
TSN~ H=1./(1 + j*2*pi**RC):
| | | | | | ‘ ‘ ‘ subplot(2,1,1)
%0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 plot(f,abs(H))
f (Hz) grid
e — xlabel('f (Hz))
1. N U O SO SUUOE SRR SO SRR SO ylabel(IH(D)f)
| : : : : : : : | | subplot(2,1,2)
A 77777 - plot(f,angle(H))
3 3 3 3 ? 3 ‘ ‘ ‘ grid
-1.50 1060 2060 3060 4060 50‘00 60‘00 7060 8060 9060 10000 Xlabel('f (HZ)')
f (Hz) ylabel('<H(f)")

Although these are “correct” plots... we usually prefer to use:
* dB for the magnitude axis (but not the angle axis!)
* log axis (rather than linear) for the frequency axis
o But... keep in mind that when using a log axis a linear phase
will NOT be a straight line!!!
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<H(f)

IH(f)| (dB)

Instead...

we can plot this using dB and log axes...

Using log scale allows us to see
that this filter is “quite flat” up
to about 200 Hz!

‘HH\

RC=1.5915e-4;

f=1:10:10000;

H=1./(1 + j*2*pi*f*RC);
subplot(2,1,1)
semilogx(f,20*log10(abs(H)))
grid

xlabel('f (Hz)') g%e
ylabel(|H(f)[') :
subplot(2,1,2) here!
semilogx(f,angle(H))
grid

xlabel('f (Hz)")
ylabel('<H(f)")
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