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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #9
• C-T Signals: FS Spectrum
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Trig Form “Spectrum”… Is “Single Sided”
Best for “thinking about real-world ideas” Need Ak and k

for k = 0, 1, 2…

Ak = Amplitude
k  = Phase

So… to describe a signal via FS we specify:
“Amplitude & Phase @ Each Frequency”

A good way to “see” the FS coefficients is by plotting them vs. frequency:
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For this form of FS: 
• Do not need negative freqs

 “Single Sided” Spectrum

Trig Form: Amplitude & Phase
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Exp Form “Spectrum”… Is “Double Sided”
Best for “doing math” (ck are like phasors!!)

So… to describe a signal via FS we specify:
“Magnitude & Phase @ Each Frequency”

Need ck (complex!)
for k = … -2, -1, 0, 1, 2…

|ck|  = Magnitude
ck = Phase
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For this form of FS: 
• Do need negative freqs

 “Double Sided” Spectrum

Exponential Form
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For Exp Form of FS Spectrum: 
• “Double Sided” Spectrum
• |ck|   0   for all k

 Even Symmetry for Magn.
• ck is in radians
• c0 =  0  or 
• ck = –c–k

 Odd Symmetry for Phase

For Trig Form of FS Spectrum: 
• “Single Sided” Spectrum
• Ak  0   for   k > 0

 A0: positive or negative
• k   is in radians  0 = 0

Spectrum Characteristics
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Trig Form: Amplitude & Phase
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Parseval’s Theorem
We saw earlier how to compute the average power of a periodic signal if we are 
given its time-domain model:
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Q: Can we compute the average power from the frequency domain model 

A: Parseval’s Theorem says… Yes!   ,...2,1,0, kck
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Parseval’s theorem says that the avg. power can be computed this way:

ck are the Exp. Form FS coefficients Left side is clearly finite for 
real-world signals…   
Thus, the |ck| must decay fast 
enough as k 

Tells us something about how the 
magnitude spectrum should look!
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“sum” of squares in time-domain model “sum” of squares in freq.-domain model

Interpreting Parseval’s Theorem

)(2 tx = power at time t (includes 
effects of all frequencies)

We can find the power in the time 
domain by “adding up” all the 
“powers at each time”

2
kc power at frequency k0

(includes effects of all times) 

We can find the power in the frequency 
domain by adding up all the “powers at 
each frequency”
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One Use for Parseval’s Theorem
When numerically computing the FS approximation… PT allows you to compute 
the power of the error term: 
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Then find power of error as Perror = P – Papprox
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Since the |ck| decay as k 
this shows that we can make 
Perror as small as we want by 
making K big enough!
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