

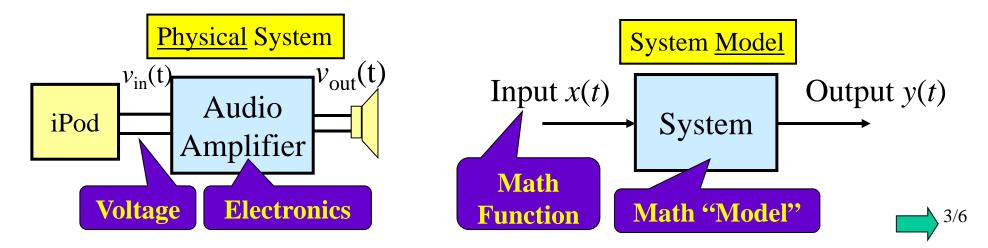
State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #1 - Overview

• What *is* "Signals & Systems" all about???

Do All EE's & CoE's Design Circuits?


- No!!!! Someone has to figure out what function those circuits need to do
- Someone also needs to figure out the "algorithms" needed (i.e., mathematical "processing")
- Someone also needs to figure out what the whole system needs to do

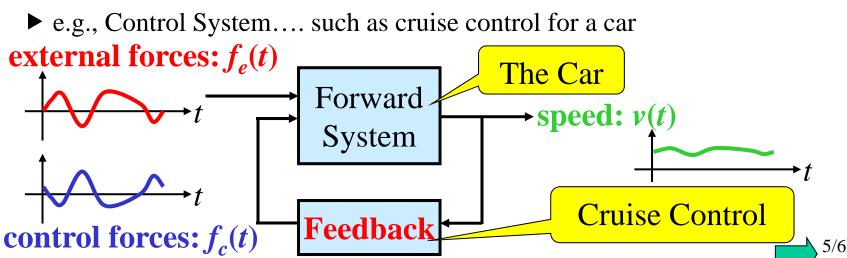
So... lots of EEs/CoEs don't design circuits at all... What they do instead is <u>design the **systems & algorithms**</u> that are needed to accomplish certain needed tasks

> Rely Heavily on Mathematical Models

Signals & Systems

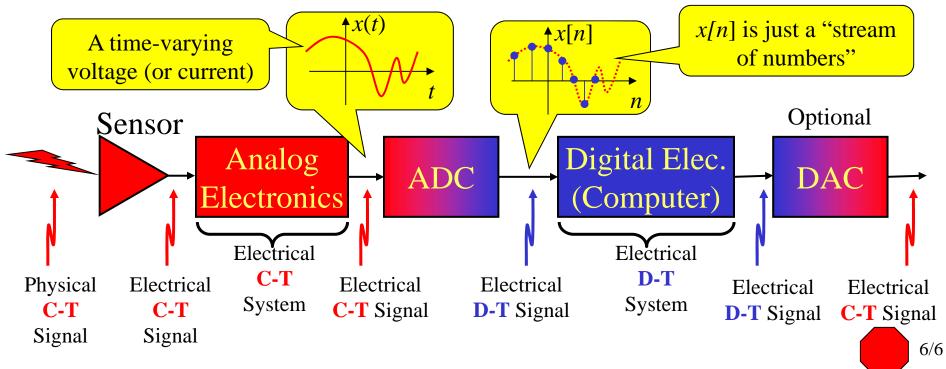
- Because most "systems" are driven by "signals" EEs & CoEs study what is called "Signals & Systems"
- "<u>Signal</u>" = a time-varying voltage (or other quantity) that generally carries some information
- The job of the "<u>System</u>" is often to extract, modify, transform, or manipulate that carried information
- So... a big part of "<u>Signals & Systems</u>" is using <u>math models</u> to see what a system "does" to a signal

Some Application Areas


From Table 32.1 in *Electrical Engineering Uncovered*, 2nd Ed., by White & Doering

Application Area	Specific Uses of Signals & Systems
Telecommunications	Answering machines, modems, fax machines, cell phones, speaker phones
Speech and Audio	Voice mail, speaker verification, synthetic speech, audio compression (e.g., mp3)
Automotive	Engine control, antilock braking systems, active suspension, airbag control, system diagnosis
Medical	Hearing aids, remote monitoring, ultrasound imaging, magnetic resonance imaging (MRI)
Image Processing	3D animation, image enhancement, image compression (JPEG), video compression (MPEG), high-definition TV
Control Systems	Head positioning in disk drives, laser control (e.g., printers, CD/DVD drives), engine & motor control, robots
Military & Aerospace	Radar & sonar, navigation systems (e.g., GPS), secure communications, missile guidance, battlefield sensors

In each of these areas you can't build the electronics until your math models tell you what you need to build


Five Common Signals & Systems Scenarios:

- Given a system, determine a signal that will pass through it well
 - ▶ e.g., Communication <u>Transmitter</u>
- Given a type of signal, design a system that will pass it well
 - ▶ e.g., Audio Amplifier
- Design a system that will make a desired change to a signal
 - ▶ e.g., Audio Equalizer
- Design a system that will extract desired info from a signal
 - ► e.g., Radar System or Communication <u>Receiver</u>
- Design a system (and maybe signal) that gives a desired output

Continuous-Time & Discrete-Time

- Modern systems generally...
 - get a <u>continuous-time signal</u> from a sensor
 - a <u>cont.-time system</u> modifies the signal
 - an "analog-to-digital converter" (ADC or A-to-D) sample the signal to create a <u>discrete-time signal</u> ... a "stream of numbers"
 - A discrete-time system to do the processing
 - convert back to C-T signal with a "Digital-to-Analog Converter" (DAC)

