
EEO 303
Prof. Fowler

Fast Fourier Transform (FFT)

1.1 Background
The FFT is a computationally efficient algorithm for computing the discrete Fourier

transform (DFT). The DFT is the mathematical entity that is used to perform spectral
analysis on samples of a signal. The FFT is the computational entity that is used to
efficiently compute the DFT of a signal. The DFT of the N signal samples

1,,2,1,0),(−= Nnnx  is defined as

∑
−

=

−==
1

0
1,,2,1,0)()(

N

n

kn
N NkWnxkX  ,

where for notational convenience we have defined Nj
N eW /2π−= . The direct

computation of the DFT requires on the order of 2N additions and multiplies; however,
computing the DFT using the FFT algorithm requires on the order of NN 2log)2/(
additions and multiplies. The “speed improvement factor” of the FFT increases as N gets
larger, and is already a whopping 204.8 for N = 1024 and 682.7 for N = 4096. The catch
to achieve this speed improvement is that the value of N must be a power of 2*.

1.2 Description of the FFT Algorithm

1.2.1 Development
The basis of the FFT algorithm lies in the fact that an N–point DFT can be written

as the (weighted) sum of two N/2–point DFTs (one DFT of the even-indexed samples and
one DFT of the odd-indexed samples) as

1,,2,1,0)12()2()(

DFTpoint 2/

1)2/(

0
2/

DFTpoint 2/

1)2/(

0
2/ −=++=

−

−

=

−

−

=
∑∑ NkWnxWWnxkX

N

N

n

kn
N

k
N

N

N

n

kn
N 

    

.

Each N/2-pt DFTs need only be evaluated for k = 0, 1, 2, … , N/2 –1, because k

NW 2/ is
periodic with period N/2. The complex-valued weighting factor on the second DFT is
called a Twiddle Factor (TF). This decomposition of a DFT is shown for N=8 in Figure 1
below; the dots indicate summation (the two values going into a dot get added with the
result going to the output) and a twiddle factor beside a line multiplies the value passing
through the line. The crossed-line structure that combines the outputs of the two 4-pt
DFTs into the 8-pt DFT outputs is called a Butterfly because of its shape. For clarity, one
of the butterflies is shown in Figure 2, where the rules for forming the butterfly outputs
are given. Note that the twiddle factors in this form of butterfly are m

NW and)2/(Nm
NW + .

* There are FFT algorithms for which this requirement is relaxed; however, their implementation is
considerably more difficult and the so-called radix-two forms (e.g., for length a power of two) are well
suited to the current application. In this document we will refer to “the FFT” algorithm to mean the one
that is described here, ignoring the fact that many other forms exist.

 1

Some exploitable structure of the twiddle factors of the form)2/(Nm
NW + hinge on the

properties of complex numbers as shown for N=8 in Figure 3. This allows the butterfly
structure to be improved as shown in Figure 4, which is then used in Figure 5 to give an
improved form of the DFT decomposition.
 This decomposition into half-length DFTs can be done again to each of the two
N/2-pt. DFTs, and then again, and then again … until reaching 2-pt DFTs. If the
resulting twiddle factors are handled using the “improved form” discussed above, the

4-Point
DFT

x(0)

x(2)
x(4)
x(6)

4-Point
DFT

x(1)

x(3)
x(5)
x(7)

W8
0

W8
1

W8
2

W8
3

W8
4

W8
5

W8
6

W8
7

X(0)

X(1)
X(2)
X(3)

X(4)

X(5)
X(6)
X(7)

Figure 1: Decomposing 8-pt DFT into 4-pt DFTs

WN
m

WN
(m+N/2)

Out1= In1 + WN
m In2

Out2 = In1 + WN
(m+N/2) In2

In1

In2

Figure 2: Butterfly Structure

 2

Real

Imaginary

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7 = WN

3+4 = – WN
3

Rotation by
N/2 causes
Negation

Figure 3: Exploitable Structure of Twiddle Factors

 3

WN
m

WN
(m+N/2)

= –WN
m

Output #1

Output #2

Input #1

Input #2

WN
m –1

Output #1

Output #2

Input #1

Input #2

(a) Original Form of Butterfly

(b) Improved Form of Butterfly

Figure 4: Transition to Improved Form of Butterfly

4-Point
DFT

x(0)

x(2)
x(4)
x(6)

4-Point
DFT

x(1)

x(3)
x(5)
x(7)

W8
0

W8
1

W8
2

W8
3

–1

X(0)

X(1)
X(2)
X(3)

X(4)

X(5)
X(6)
X(7)

–1

–1

–1

Figure 5: Improved Form of DFT Decomposition

 4

xin(0) = x(0)

xin(1) = x(4)
xin(2) = x(2)
xin(3) = x(6)

xin(4) = x(1)

xin(5) = x(5)
xin(6) = x(3)
xin(7) = x(7)

W8
0

W8
1

W8
2

W8
3

–1

X(0)

X(1)
X(2)
X(3)

X(4)

X(5)
X(6)
X(7)

–1

–1

–1

W8
0

W8
2

W8
0

W8
2

–1

–1

–1

–1

–1

–1

–1

–1

W8
0=1

W8
0=1

W8
0=1

W8
0=1

FFT for N=8

1st Stage
BF_Step=1
BF_Span=1
Blk_Step=2

2nd Stage
BF_Step=1
BF_Span=2
Blk_Step=4

3rd Stage
BF_Step=1
BF_Span=4
Blk_Step=8

Figure 6: Illustration of FFT Structure for 8-pt DFT

structure that results is the FFT, and is shown for N=8 in Figure 6; the parameters listed
at the bottom of Figure 6 will be explained below.

To ensure that the diagram in Figure 6 is understood we present the following
walk-through. First note that the diagram is clearly divided into Stages, with the output
array of a stage being the input of the next stage. Each stage uses N/2 butterflies to
transform N numbers in its input array into N numbers in its output array, but each stage
configures those N/2 butterflies differently. Note that it is possible to store the output
array of each stage back into the same memory locations that the inputs array was in; this
is known as “in-place” computation of the FFT. It is also important to note that the order
of the samples in the 1st Stage input array have been reordered by the repeated DFT
decompositions discussed above (this reordering will be discussed further below). For
indexing purposes we consider xin to be the input array, containing the reordered samples
of the signal. The final output array is in sequentially indexed order. Also note that the
twiddle factors needed consist of WN

0, WN
1, WN

2, and WN
3, which is only half the total set

displayed in Figure 3; in fact, it is only the “bottom” four of those shown in Figure 3 due
to the exploitable structure shown there. The twiddle factors needed for the various
stages are shown in Figure 7.

The reordering of the signal samples to form the input array to the first stage
follows a very simple rule called bit reversal. To find the proper order for the input
samples to be stored in the FFT input array you simply take the (log2N)-bit binary
representations of the N integers 0 to (N-1) and reverse the order of the bits. The
resulting numbers give the needed order of the input signal samples. This procedure is

 5

shown in Figure 8, where it is also indicated that the real effect of the bit reversal is to
swap some pairs of signal samples but to leave in place other pairs.

Starting in the 1st Stage at the top butterfly of Figure 6, the diagram says to form
the top output of the butterfly by adding x(4) to x(0) and to form the bottom output of the
butterfly by subtracting x(4) from x(0). Note that here the twiddle factor in front of the
butterfly is 1, as they are for all the 1st Stage butterflies. Likewise, all the other 1st Stage
butterflies compute the sums and differences of their inputs and pass the results to their
outputs and store them into the memory locations of the inputs. We can view this first
stage as having N/2 blocks with a single butterfly per block (this idea of blocks will
become clearer when we discuss the 2nd Stage). Also note that the inputs to each of the
1st stage butterflies are adjacent samples in the (reordered) input array; we say that the 1st
Stage butterflies have a Butterfly Span = 1. Also, the index distance between 1st Stage
blocks is 2, so we define Block Step = 2. We also define a parameter called Butterfly Step
and set it to 1 for the 1st Stage; this will be defined more precisely below for the 2nd and
3rd Stages.

Going now to the 2nd Stage we again see a repetition of the butterfly structure, but
with a different structure than in the 1st Stage. Here it is clear that the butterflies have a
Butterfly Span = 2 (i.e., the inputs to a 2nd Stage butterfly are two indices away from each
other in the 2nd Stage input array). Although there are N/2 butterflies (as in each stage)
there are two distinct blocks with two butterflies per block. The first block consists of the
top two butterflies and the second block consists of the bottom two butterflies. Within
each of these two blocks the index increment between butterflies is 1; that is, the top
input of two adjacent butterflies within a block are offset by 1. Thus we say that the
Butterfly Step = 1. Also, we note that the Block Step = 4 in the 2nd Stage; that is, the top
input of the bottom block is four indices away from the top input of the top block. The
twiddle factors follow the same progression in each of the two blocks. The progression
of the twiddle factors within a block is seen to be from WN

0 to a ¼ of the way around the
circle to WN

2 as seen in Figure 3. That is, the twiddle factor angle step for this is 2π/4.
Alternatively, we can consider the set of all the twiddle factors needed for all stages (i.e.,

 6

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

1st Stage
Twiddle Factors

2nd Stage
Twiddle Factors

3rd Stage
Twiddle Factors

Dashed
Arrows Show

TFs Not Needed
2π/4

2π/8

Figure 7: Twiddle Factors for Stages of 8-pt FFT

Figure 8: Bit Reversal Rule Reorders Input Samples

WN

0, WN
1, WN

2, and WN
3) to be indexed by their powers (0, 1, 2, 3); then the indexes into

this set for the two twiddle factors required for this stage is 0×(N/4)=0 and 1×(N/4)=2.
So the twiddle factor index step used in each block of the 2nd Stage is N/4 = 2.

Going to the 3rd Stage we yet again see a repetition of the butterfly, but with a
different structure than in the 1st or 2nd Stages. We see a single block of N/2 butterflies
with Butterfly Step = 1 and Butterfly Span = 4. Because there is only one block the
parameter Block Step is not really needed; however, it is convenient here to think of
Block Step = N = 8 (i.e., this value steps beyond the index range of the 3rd Stage input
array). The progression of the twiddle factors within the block is WN

0, WN
1, WN

2, and WN
3

and from Figure 3 we see that twiddle factor angle step for this progression is 2π/8.
Alternatively, the indexes into this set for the four twiddle factors required for this stage
is 0×(N/8)=0, 1×(N/8)=1, 2×(N/8)=2, and 3×(N/8)=3, So the twiddle factor index step
used in the single block of the 3rd Stage is N/8 = 1.

1.2.2 FFT Implementation Issues
It is clear that there is a lot of structure here that needs to be attended to in the

implementation of the FFT. Let’s try to use the above characterizations of the N=8 case
to extract the general rules for the FFT structure needed for implementation for an
arbitrary power-of-two length FFT. We start first with the stage/block/butterfly structure
and then discuss the twiddle factor structure. The issue of bit reversal will be handled
separately from the FFT routine because for our application the several FFTs of the same

 7

length will be computed in computing the power spectrum; that way the bit reversed
indices have to be computed only once, but can be used many times for indexing the
subsequent FFTs. Thus we assume that the input to the FFT routine is an array of signal
samples that have already been reordered according to bit-reversed index values.
 Important Note: The indexing schemes given in the descriptions and the
pseudo-code below DO NOT incorporate the indexing needed to handle complex
numbers stored as sequential pairs of real and imaginary parts (see Section 1.2.2.5 for
more information). Instead they assume that a complex number can be indexed as a
single unit rather than a sequential pair of real and imaginary parts. However, the changes
needed should be obvious and straightforward.

1.2.2.1 The Structure of Stages, Blocks, and Butterflies
The 1st Stage will always consist of N/2 blocks with 1 butterfly/block; each

butterfly has Butterfly Span = 1; the blocks are offset by 2 and therefore the Block Step =
2; by default we say that the Butterfly Step = 1. In each subsequent stage we have twice
as many blocks, each having half as many butterflies/block; each butterfly has double the
span; the block step is twice as large; and the butterfly step stays constant at 1. This
continues until there is only one block of N/2 butterflies; that is, there are log2(N) stages.
This structure is captured in Table 1, where the stages have been numbered using an
origin-0 scheme.

Table 1: FFT Parameters for Various Stages

Stage → 0 1 2 3 … log2(N)-1
Num Blocks N/2 N/4 N/8 N/16 … N/N = 1
BFs/Block 1 2 4 8 … N/2
BF Span 1 2 4 8 … N/2
Block Step 2 4 8 16 … N
BF Step 1 1 1 1 … 1

From this it is clear that these parameters can be specified in terms of the origin-0 index k
of the stage number as shown in Table 2.

Table 2: Rules for kth Stage of FFT

 kth Stage
(Origin-0)

Num Blocks N/2(k+1)
BFs/Block 2k
BF Span 2k
Block Step 2(k+1)
BF Step 1

 8

From this discussion we find that the FFT can be implemented using an outer loop
over the stages and then at each stage a loop over the blocks and then, finally, for each
block a loop over the butterflies in the block. The results in Table 2 are used to get the
correct size loops and the correct indexing of the butterflies in the various parts of the
loops. Note that all the quantities in Table 2 depend only on the stage index and can
therefore be computed just once per stage. At each stage we need a pointer to the
beginning of each block, and that is given by multiplying the Block Step by the origin-0
block index (Blk_Pntr = m*Blk_Step). Within each block we need a pointer to the

current butterfly’s two inputs. The top input to the butterfly is indexed by multiplying the
Butterfly Step (always 1) by the origin-0 butterfly index and adding the result to the
Block Pointer (Input_1 = Blk_Pntr + n*BF_Step); the bottom input to the butterfly is
indexed relative to the top input by adding an offset of Butterfly Span (Input_2 = Input_1
+ BF_Span). These results are shown in the pseudo-code shown in the box titled “FFT’s
Stage/Block/Butterfly Structure”, which doesn’t address the bit reversal or the twiddle
factor computation that is needed.

1.2.2.2 Twiddle Factor Computation
 For efficiency the twiddle factors should be pre-computed before entering into the
routine given above. Then the call “TF_Look_Up” in the pseudo-code above just does a
look-up of the needed twiddle factor. In fact, for the application here the TF table can be
computed just once for all the FFTs to be computed (i.e., outside the loop over the
blocks). We’ll first address how to compute the twiddle factors and then discuss how to
index the computed values when they are needed in the various blocks.

FFT’s Stage/Block/Butterfly Structure
(Doesn’t Include Bit Reversal or Twiddle Factor)

for k = 0 to [log2(N) – 1] % Loop over stages
 Num_Blks_Stage = N/2(k+1) % compute # of blocks for current stage
 Num_BFs_Block = 2k % compute # of butterflies/block in current stage
 BF_Span = 2k % compute span of butterflies in current stage
 Blk_Step = 2(k+1) % compute step between blocks in current stage
 BF_Step = 1 % define step between BFs in current block
 for m = 0 to Num_Blks_Stage–1 % Loop over blocks in current stage
 Blk_Pntr = m*Blk_Step % compute pointer to beginning of current block
 for n = 0 to Num_BFs_Block–1 % Loop over butterflies in current block
 TF=TF_Look_Up(n,k) % compute TF for current BF (indep. of block #)
 Input_1 = Blk_Pntr + n*BF_Step % compute pointer to first input to BF
 Input_2 = Input_1 + BF_Span % compute pointer to second input to BF
 BF_In_1 = x(Input_1) % retrieve input #1 to the BF
 BF_In_2 = x(Input_2)*TF % retrieve input #2 and apply TF
 BF_Out_1 = BF_In_1 + BF_In_2 % compute BF output #1
 BF_Out_2 = BF_In_1 – BF_In_2 % compute BF output #2
 x(Input_1)=BF_Out_1 % store BF outputs back in input array
 x(Input_2)=BF_Out_2
 end on n % end of loop over BFs in Block
 end on m % end of loop over Blocks in Stage
end on k % end of loop over Stages

 9

 Computation of the twiddle factors requires computation of sines and cosines, as
is seen from Euler’s formula, namely

),/2sin()/2cos(

/2

NmjNm
eW Nmjm

N

ππ

π

−=
= −

where j is the imaginary unit number (1−=j), the first line is by definition of the
twiddle factor and the second line is by Euler’s formula. Remember that we only need to
compute the twiddle factors for half the values of m, namely m = 0, 1, 2, …, (N/2) –1,
rather than all the way to m = N –1. These sines and cosines are needed at uniformly
spaced angles (i.e., spacing of ∆θ = 2π/N), and that fact can be used to find an efficient
way to compute them recursively. This recursion is based on the following trigonometry
identities:

).sin()cos()cos()sin()sin(
)sin()sin()cos()cos()cos(

BABABA
BABABA

+=+
−=+

This is applied to compute sine and cosine at some multiple of ∆θ by recognizing that

θθθ ∆+∆−=∆)1(mm and using the trig identities to write

).sin())1cos(()cos())1sin(()sin(
)sin())1sin(()cos())1cos(()cos(

θθθθθ
θθθθθ

∆∆−+∆∆−=∆
∆∆−−∆∆−=∆

mmm
mmm

Thus, if we have already computed sine and cosine of θ∆ , we can use them to define a
recursive computation for the sines and cosines needed for the twiddle factors. Defining

)sin(θθ ∆=∆S ,)cos(θθ ∆=∆C ,)cos()(θ∆= mmC , and)sin()(θ∆= mmS we have
the recursions between adjacent angles for the twiddle factors

).1()1()(
)1()1()(

−+−=
−−−=

∆∆

∆∆

mCSmSCmS
mSSmCCmC

θθ

θθ

Now note that for m = 0 the values of the sine and cosine are known to be

,0)0sin()0(
1)0cos()0(

=∆×=
=∆×=

θ
θ

S
C

and can be used to initialize the recursion. Once the values of C(m) and S(m) are
computed by the recursion, then the twiddle factors can be computed using Euler’s
formula as

).()(mjSmCW m
N −=

 10

Thus, the computation of the twiddle factors can be done using the pseudo-code shown
below, which requires only two calls to computationally expensive trigonometric
subroutines; the rest are computed through the computationally inexpensive recursion.

1.2.2.3 Twiddle Factor Indexing
As the 8-pt example FFT above showed, the indexing of the twiddle factors from

the pre-computed list has a definite structure. This section will describe this structure.
Note from Figure 6 that the structure of the twiddle factors is the same for every block in
a stage; thus, the twiddle factor indexing structure depends only on the current stage.
Also, the number of different twiddle factors needed in each block is equal to the number
of butterflies in the block (i.e., one twiddle factor per butterfly). From Figure 7 notice
that in each stage, the needed twiddle factors follow a uniform angular progression.
Thus, the key to the twiddle factor structure is determining the angular step between
twiddle factors as a function of the stage index. Generalizing from Figure 7 we see that
the first stage needs a single twiddle factor of 10 =NW ; the second stage needs two
different twiddle factors, namely 0

NW and 4/N
NW ; the third stage needs four twiddle

factors, namely 0)8/0(
N

N
N WW =× , 8/)8/1(N

N
N

N WW =× , 4/)8/2(N
N

N
N WW =× , and

8/3)8/3(N
N

N
N WW =× ; etc. Thus we see that at the kth (indexed origin-0) stage we need k2

twiddle factors chosen uniformly spread in angle from the set of all the N/2 needed
twiddle factors (i.e., 0

NW , 1
NW , 2

NW , …,)12/(−N
NW . Equivalently, we are choosing k2

equally spaced indices from the set of indices 0, 1, 2, … , N/2 –1; thus, the step between
these indices must be TF Index Step =)1(2/2/)2/(+= kk NN . Thus, the required indices
into the twiddle factor table are m×(TF Index Step) =)1(2/ +kmN for m = 0, 1, 2, … , 2k–1.

1.2.2.4 Pseudo-Code for FFT

Notes:

Pre-Computation of the Twiddle Factors

Del_Theta = 2π/N % Compute the angle increment
C_Del = cos(Del_Theta) % Compute cosine of angle increment; multiplier used in recursion
S_Del = sine(Del_Theta) % Compute sine of angle increment; multiplier used in recursion
C(0) = 1 % Compute initial cosine to initialize recursion
S(0) = 0 % Compute initial sine to initialize recursion
TF_List(0)=1
for m = 1 to (N/2 – 1) % Loop over needed TFs; Only need N/2 TFs, not all N of them
 C(m) = C_Del*C(m-1) – S_Del*S(m-1) % Compute mth cosine value via the recursion
 S(m) = C_Del*S(m-1) + S_Del*C(m-1) % Compute mth sine value via the recursion
 TF_List(m) = C(m) – j*S(m) % Compute mth TF (See below for discussion of complex
#s)
end on m % end of loop over needed TFs

 11

1. This pseudo-code assumes that the input array is already in bit-reversed order (see
Section 1.2.3 for details of bit reversal)

2. This pseudo-code does not check that the length of the signal data is a power of two;
the actual code produced may need to do that since this FFT algorithm will NOT
work for signal lengths that are not a power of two.

3. The indexing in this pseudo-code does NOT handle the fact that complex numbers
typically have their real and imaginary parts stored in consecutive memory locations;
instead, it assumes that the real and imaginary parts are stored as a single unit. That
is, it is assumed that the data and twiddle factors are stored as arrays of complex
numbers.

Pseudo-Code for FFT

%% Input signal data is in array called Data, in bit-reversed order

%% TF_List has been computed prior to entering this code

%%%%%%% Stage/Block/Butterfly Loops %%%%%
for k = 0 to [log2(N) – 1] % Loop over stages
 Num_Blks_Stage = N/2(k+1) % compute # of blocks for current stage
 Num_BFs_Block = 2k % compute # of butterflies/block in current stage
 BF_Span = 2k % compute span of butterflies in current stage
 Blk_Step = 2(k+1) % compute step between blocks in current stage
 BF_Step = 1 % define step between BFs in current block
 TF_Index_Step = N/2(k+1) % compute the step between TF indices for this stage
 for m = 0 to Num_Blks_Stage–1 % Loop over blocks in current stage
 Blk_Pntr = m*Blk_Step % compute pointer to beginning of current block
 for n = 0 to Num_BFs_Block–1 % Loop over butterflies in current block
 TF_Index = n*TF_Index_Step % compute the index to the TF for this BF
 TF=TF_List(TF_Index) % look-up in the pre-comp. TF_List the TF for this BF
 Input_1 = Blk_Pntr + n*BF_Step % compute pointer to first input to BF
 Input_2 = Input_1 + BF_Span % compute pointer to second input to BF
 BF_In_1 = Data(Input_1) % retrieve input #1 to the BF
 BF_In_2 = Data(Input_2)*TF % retrieve input #2 and apply TF
 BF_Out_1 = BF_In_1 + BF_In_2 % compute BF output #1
 BF_Out_2 = BF_In_1 – BF_In_2 % compute BF output #2
 Data(Input_1)=BF_Out_1 % store BF outputs back in input array
 Data(Input_2)=BF_Out_2
 end on n % end of loop over BFs in Block
 end on m % end of loop over Blocks in Stage
end on k % end of loop over Stages

%% Result of FFT is in the array called Data, in sequential order of the DFT, i.e. X(0), X(1), … X(N-1).

Pseudo-Code Box 1: FFT Code (w/o Bit-Reversal Indexing)

 12

1.2.2.5 Storing and Computing with Complex Numbers
Some comments are in order on the fact that the numbers that have to be dealt

with in an FFT are complex-valued. The values computed above for the sines and
cosines (i.e., S(m) and C(m)) are real-valued numbers. The twiddle factors are (in
general) complex-valued numbers, in that they have a real part and an imaginary part. In
an implementation it is customary to store the real and imaginary parts of complex
numbers in adjacent memory locations. Thus, when storing the sequence of the complex-
valued twiddle factors TF(m) = C(m) – j S(m) for m = 0, 1, 2, … , N/2 – 1 it is customary
to store them in sequential memory locations as C(0), −S(0), C(1), −S(1), C(2), −S(2), …
C(N/2 – 1), −S(N/2 – 1). Likewise, the input signal data is complex-valued and therefore
should be stored similarly as alternating between real and imaginary parts. Thus, all
multiplications and additions that are specified in these algorithms must be complex
additions and multiplications. Complex addition consists simply of adding real part to
real part to get the real part of the result and adding imaginary part to imaginary part to
get the imaginary part of the result. Complex multiplication consists of the following:

)()()()(212121212211 IRRIjIIRRjIRjIR ++−=+×+

Thus, for example, if a signal sample’s real and imaginary parts are stored in sequential
memory locations as XR and XI and they must be multiplied by twiddle factors stored in
sequential memory locations as C(m) and −S(m), then the product gets stored in
sequential memory locations as [XR C(m) + XI S(m)] for the real part of the product and
[XI C(m) – XR S(m)] for the imaginary part of the product.
 Important Note: The indexing schemes given in the pseudo-code above DO
NOT incorporate the indexing needed to handle complex numbers stored as sequential
pairs of real and imaginary parts. However, the changes needed should be obvious and
straightforward.

1.2.3 Bit Reversal Pseudo-Code
There are many ways to implement the bit-reversed indexing needed for the FFT,

and in fact an active area of research today is the development of efficient bit-reversal
techniques that are tailored to the memory structures of today’s computer architectures.
In high-throughput cutting-edge implementations the implementation of the bit reversal
part of the FFT algorithm is crucial. However, for the application here it is felt that a
“garden variety” method will be suitable. This is believed because (1) the application is
not a high-throughput case due to the fact that the FFT result is intended for human
viewing not further processing, and, most importantly, (2) the bit-reversed indices are
used for computing several FFTs and therefore their overhead is spread over these
multiple FFTs, making the minimization of the overhead less critical. Furthermore,
without a detailed evaluation of the memory/computer architecture to be used it is
impossible to perform a valid tradeoff between the various competing bit-reversal
methods.

There are two main steps here: (1) compute the bit-reversed indices, and (2) use
those indices to reorder a block of signal data to be applied to the FFT. The basic need
for bit reversal was discussed in 1.2.1. The implementation presented here relies on a

 13

simple recursion known as Horner’s recursion that allows efficient evaluation of
polynomials. Let k = 0, 1, 2, 3, …, N–1, where N=2n, be the index of the signal samples
and let k~ be the corresponding bit-reversed index for the data array (the ~ symbol
graphically evokes the idea of reversal). Then let the n-bit binary representation of k be
kn-1 kn-2 … k3 k2 k1 k0, from MSB to LSB. Then, the n-bit binary representation of k~ is k0
k1 k2 k3… kn-2 kn-1, from MSB to LSB. Thus, we can write

,222222~ 0

1
1

2
1

3
3

2
2

1
1

0 −−
−−−− ++++++= nn

nnnn kkkkkkk 

which can be viewed as a polynomial (with coefficients given by the ki) evaluated at the
value 2. Thus, we can use Horner’s recursion to rewrite this in a more computationally
efficient way

));))2(2(2(2(2~
012321  kkkkkkk nnn ++++++= −−−

for clarity, an example for n = 7 gives

))))).2(2(2(2(2(2~
0123456 kkkkkkkk ++++++=

This technique is used in the pseudo-code given below for computing the bit-reversed
indices.

Pseudo-Code for Computing Bit Reversed Indices via Horner's Method

%% We want to bit reverse the indices 0 to N-1, where N=2n
%% Note: implement multiply (divide) by two via shift left (right)

for k=0 to (N-1) % Loop over indices of signal samples
 temp = k % set current index value
 k_tilde=0 % initialize reversed index to zero
 for i=0 to (n-2) % Loop over the bits for Horner’s Recursion
 if LSB(temp)=1 % check if LSB of temp is set
 k_tilde=k_tilde+1 % if so, add 1 to k_tilde
 end if
 k_tilde=2*k_tilde % make next higher power in Horner’s Recursion
 temp = temp/2 % shift right on temp
 end on i % End loop over bits
 if LSB(temp)=1 % check if LSB of temp is set
 k_tilde=k_tilde + 1 % if so, add in last term of Horner’s Recursion
 end if
 k_tilde_array(k)=k_tilde
end on k % End loop over indices of signal

%%% k_tilde_array now holds the bit reversed indices
%%% These BR’d indices are then used to reorder the signal samples for the FFT input array

Pseudo-Code Box 2: Compute Bit-Reversed Indices

	Fast Fourier Transform (FFT)
	1.1 Background
	1.2 Description of the FFT Algorithm
	1.2.1 Development
	1.2.2 FFT Implementation Issues
	1.2.2.1 The Structure of Stages, Blocks, and Butterflies
	1.2.2.2 Twiddle Factor Computation
	1.2.2.3 Twiddle Factor Indexing
	1.2.2.4 Pseudo-Code for FFT
	1.2.2.5 Storing and Computing with Complex Numbers

	1.2.3 Bit Reversal Pseudo-Code

