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Fast Fourier Transform (FFT) 

1.1 Background 
The FFT is a computationally efficient algorithm for computing the discrete Fourier 

transform (DFT).  The DFT is the mathematical entity that is used to perform spectral 
analysis on samples of a signal.  The FFT is the computational entity that is used to 
efficiently compute the DFT of a signal.  The DFT of the N signal samples 
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where for notational convenience we have defined Nj
N eW /2π−= .  The direct 

computation of the DFT requires on the order of 2N  additions and multiplies; however, 
computing the DFT using the FFT algorithm requires on the order of NN 2log)2/(  
additions and multiplies.  The “speed improvement factor” of the FFT increases as N gets 
larger, and is already a whopping 204.8 for N = 1024 and 682.7 for N = 4096.  The catch 
to achieve this speed improvement is that the value of N must be a power of 2*. 
  

1.2 Description of the FFT Algorithm 

1.2.1 Development 
The basis of the FFT algorithm lies in the fact that an N–point DFT can be written 

as the (weighted) sum of two N/2–point DFTs (one DFT of the even-indexed samples and 
one DFT of the odd-indexed samples) as  
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Each N/2-pt DFTs need only be evaluated for k = 0, 1, 2, … , N/2 –1, because k

NW 2/  is 
periodic with period N/2. The complex-valued weighting factor on the second DFT is 
called a Twiddle Factor (TF).  This decomposition of a DFT is shown for N=8 in Figure 1 
below; the dots indicate summation (the two values going into a dot get added with the 
result going to the output) and a twiddle factor beside a line multiplies the value passing  
through the line.  The crossed-line structure that combines the outputs of the two 4-pt 
DFTs into the 8-pt DFT outputs is called a Butterfly because of its shape.  For clarity, one 
of the butterflies is shown in Figure 2, where the rules for forming the butterfly outputs 
are given.  Note that the twiddle factors in this form of butterfly are m

NW  and )2/( Nm
NW + .  

                                                 
* There are FFT algorithms for which this requirement is relaxed; however, their implementation is 
considerably more difficult and the so-called radix-two forms (e.g., for length a power of two) are well 
suited to the current application.  In this document we will refer to “the FFT” algorithm to mean the one 
that is described here, ignoring the fact that many other forms exist. 
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Some exploitable structure of the twiddle factors of the form )2/( Nm
NW +  hinge on the 

properties of  complex numbers as shown for N=8 in Figure 3.   This allows the butterfly 
structure to be improved as shown in Figure 4, which is then used in Figure 5 to give an 
improved form of the DFT decomposition. 
 This decomposition into half-length DFTs can be done again to each of the two 
N/2-pt. DFTs, and then again, and then again … until reaching 2-pt DFTs.  If the 
resulting twiddle factors are handled using the “improved form” discussed above, the  
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Figure 1: Decomposing 8-pt DFT into 4-pt DFTs 
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Figure 2: Butterfly Structure 
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Figure 3: Exploitable Structure  of Twiddle Factors 
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Figure 4: Transition to Improved Form  of Butterfly 
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Figure 5: Improved Form of DFT Decomposition 
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Figure 6: Illustration of FFT Structure for 8-pt DFT 

 
structure that results is the FFT, and is shown for N=8 in Figure 6; the parameters listed 
at the bottom of Figure 6 will be explained below. 

To ensure that the diagram in Figure 6 is understood we present the following 
walk-through.  First note that the diagram is clearly divided into Stages, with the output 
array of a stage being the input of the next stage.  Each stage uses N/2 butterflies to 
transform N numbers in its input array into N numbers in its output array, but each stage 
configures those N/2 butterflies differently.  Note that it is possible to store the output 
array of each stage back into the same memory locations that the inputs array was in; this 
is known as “in-place” computation of the FFT.  It is also important to note that the order 
of the samples in the 1st Stage input array have been reordered by the repeated DFT 
decompositions discussed above (this reordering will be discussed further below).  For 
indexing purposes we consider xin to be the input array, containing the reordered samples 
of the signal.  The final output array is in sequentially indexed order.  Also note that the 
twiddle factors needed  consist of WN

0, WN
1, WN

2, and WN
3, which is only half the total set 

displayed in Figure 3; in fact, it is only the “bottom” four of those shown in Figure 3 due 
to the exploitable structure shown there.  The twiddle factors needed for the various 
stages are shown in Figure 7. 

The reordering of the signal samples to form the input array to the first stage 
follows a very simple rule called bit reversal.  To find the proper order for the input 
samples to be stored in the FFT input array you simply take the (log2N)-bit binary 
representations of the N integers 0 to (N-1) and reverse the order of the bits.  The 
resulting numbers give the needed order of the input signal samples.  This procedure is 
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shown in Figure 8, where it is also indicated that the real effect of the bit reversal is to 
swap some pairs of signal samples but to leave in place other pairs.   

Starting in the 1st Stage at the top butterfly of Figure 6, the diagram says to form 
the top output of the butterfly by adding x(4) to x(0)  and to form the bottom output of the 
butterfly by subtracting x(4) from x(0).  Note that here the twiddle factor in front of the 
butterfly is 1, as they are for all the 1st Stage butterflies.  Likewise, all the other 1st Stage 
butterflies compute the sums and differences of their inputs and pass the results to their 
outputs and store them into the memory locations of the inputs.  We can view this first 
stage as having N/2 blocks with a single butterfly per block (this idea of blocks will 
become clearer when we discuss the 2nd Stage).  Also note that the inputs to each of the 
1st stage butterflies are adjacent samples in the (reordered) input array; we say that the 1st 
Stage butterflies have a Butterfly Span = 1.  Also, the index distance between 1st Stage 
blocks is 2, so we define Block Step = 2.  We also define a parameter called Butterfly Step 
and set it to 1 for the 1st Stage; this will be defined more precisely below for the 2nd and 
3rd Stages. 

Going now to the 2nd Stage we again see a repetition of the butterfly structure, but 
with a different structure than in the 1st Stage.  Here it is clear that the butterflies have a 
Butterfly Span = 2 (i.e., the inputs to a 2nd Stage butterfly are two indices away from each 
other in the 2nd Stage input array).  Although there are N/2 butterflies (as in each stage) 
there are two distinct blocks with two butterflies per block.  The first block consists of the 
top two butterflies and the second block consists of the bottom two butterflies.  Within 
each of these two blocks the index increment between butterflies is 1; that is, the top 
input of two adjacent butterflies within a block are offset by 1.  Thus we say that the 
Butterfly Step = 1.  Also, we note that the Block Step = 4 in the 2nd Stage; that is, the top 
input of the bottom block is four indices away from the top input of the top block.  The 
twiddle factors follow the same progression in each of the two blocks.  The progression 
of the twiddle factors within a block is seen to be from WN

0 to a ¼ of the way around the 
circle to WN

2 as seen in Figure 3.  That is, the twiddle factor angle step for this is 2π/4.  
Alternatively, we can consider the set of all the twiddle factors needed for all stages (i.e.,  
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Figure 7: Twiddle Factors for Stages of 8-pt FFT 

 
 

Figure 8: Bit Reversal Rule Reorders Input Samples 
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3 ) to be indexed by their powers (0, 1, 2, 3); then the indexes into 

this set for the two twiddle factors required for this stage is 0×(N/4)=0 and 1×(N/4)=2.  
So the twiddle factor index step used in each block of the 2nd Stage is N/4 = 2. 

Going to the 3rd Stage we yet again see a repetition of the butterfly, but with a 
different structure than in the 1st or 2nd Stages.  We see a single block of N/2 butterflies 
with Butterfly Step = 1 and Butterfly Span = 4.  Because there is only one block the 
parameter Block Step is not really needed; however, it is convenient here to think of 
Block Step = N = 8 (i.e., this value steps beyond the index range of the 3rd Stage input 
array).  The progression of the twiddle factors within the block is WN

0, WN
1, WN

2, and WN
3 

and from Figure 3 we see that twiddle factor angle step for this progression is 2π/8.  
Alternatively, the indexes into this set for the four twiddle factors required for this stage 
is 0×(N/8)=0, 1×(N/8)=1, 2×(N/8)=2, and 3×(N/8)=3,   So the twiddle factor index step 
used in the single block of the 3rd Stage is N/8 = 1. 

1.2.2 FFT Implementation Issues 
It is clear that there is a lot of structure here that needs to be attended to in the 

implementation of the FFT.  Let’s try to use the above characterizations of the N=8 case 
to extract the general rules for the FFT structure needed for implementation for an 
arbitrary power-of-two length FFT.   We start first with the stage/block/butterfly structure 
and then discuss the twiddle factor structure.  The issue of bit reversal will be handled 
separately from the FFT routine because for our application the several FFTs of the same 
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length will be computed in computing the power spectrum; that way the bit reversed 
indices have to be computed only once, but can be used many times for indexing the 
subsequent FFTs.  Thus we assume that the input to the FFT routine is an array of signal 
samples that have already been reordered according to bit-reversed index values. 
 Important Note:  The indexing schemes given in the descriptions and the 
pseudo-code below DO NOT incorporate the indexing needed to handle complex 
numbers stored as sequential pairs of real and imaginary parts (see Section 1.2.2.5 for 
more information).  Instead they assume that a complex number can be indexed as a 
single unit rather than a sequential pair of real and imaginary parts. However, the changes 
needed should be obvious and straightforward. 

 

1.2.2.1 The Structure of Stages, Blocks, and Butterflies 
The 1st Stage will always consist of N/2 blocks with 1 butterfly/block; each 

butterfly has Butterfly Span = 1; the blocks are offset by 2 and therefore the Block Step = 
2; by default we say that the Butterfly Step = 1.   In each subsequent stage we have twice 
as many blocks, each having half as many butterflies/block; each butterfly has double the 
span; the block step is twice as large; and the butterfly step stays constant at 1. This 
continues until there is only one block of N/2 butterflies; that is, there are log2(N) stages.  
This structure is captured in Table 1, where the stages have been numbered using an 
origin-0 scheme.  
 
Table 1: FFT Parameters for Various Stages 

Stage → 0 1 2 3 … log2(N)-1 
Num Blocks N/2 N/4 N/8 N/16 … N/N = 1 
BFs/Block 1 2 4 8 … N/2 
BF Span 1 2 4 8 … N/2 
Block Step 2 4 8 16 … N 
BF Step 1 1 1 1 … 1 
 
From this it is clear that these parameters can be specified in terms of the origin-0 index k 
of the stage number as shown in Table 2. 
 

Table 2: Rules for kth Stage of FFT 

 kth Stage 
(Origin-0) 

Num Blocks N/2(k+1) 
BFs/Block 2k 
BF Span 2k 
Block Step 2(k+1) 
BF Step 1 
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From this discussion we find that the FFT can be implemented using an outer loop 
over the stages and then at each stage a loop over the blocks and then, finally, for each 
block a loop over the butterflies in the block.  The results in Table 2 are used to get the 
correct size loops and the correct indexing of the butterflies in the various parts of the 
loops.  Note that all the quantities in Table 2 depend only on the stage index and can 
therefore be computed just once per stage.  At each stage we need a pointer to the 
beginning of each block, and that is given by multiplying the Block Step by the origin-0 
block index (Blk_Pntr = m*Blk_Step). Within each block we need a pointer to the 

current butterfly’s two inputs.  The top input to the butterfly is indexed by multiplying the 
Butterfly Step (always 1) by the origin-0 butterfly index  and adding the result to the 
Block Pointer (Input_1 = Blk_Pntr + n*BF_Step); the bottom input to the butterfly is 
indexed relative to the top input by adding an offset of Butterfly Span (Input_2 = Input_1 
+ BF_Span).  These results are shown in the pseudo-code shown in the box titled “FFT’s 
Stage/Block/Butterfly Structure”, which doesn’t address the bit reversal or the twiddle 
factor computation that is needed. 

1.2.2.2 Twiddle Factor Computation 
 For efficiency the twiddle factors should be pre-computed before entering into the 
routine given above.  Then the call “TF_Look_Up” in the pseudo-code above just does a 
look-up of the needed twiddle factor.  In fact, for the application here the TF table can be 
computed just once for all the FFTs to be computed (i.e., outside the loop over the 
blocks).  We’ll first address how to compute the twiddle factors and then discuss how to 
index the computed values when they are needed in the various blocks. 

FFT’s Stage/Block/Butterfly Structure  
(Doesn’t Include Bit Reversal or Twiddle Factor) 
 
for k = 0 to [log2(N) – 1]      % Loop over stages 
 Num_Blks_Stage = N/2(k+1)    % compute # of blocks for current stage 
 Num_BFs_Block = 2k     % compute # of butterflies/block in current stage 
 BF_Span = 2k      % compute span of butterflies in current stage 
 Blk_Step = 2(k+1)     % compute step between blocks in current stage 
 BF_Step = 1      % define step between BFs in current block 
 for m = 0 to Num_Blks_Stage–1    % Loop over blocks in current stage 
          Blk_Pntr = m*Blk_Step    % compute pointer to beginning of current block 
  for n = 0 to Num_BFs_Block–1    % Loop over butterflies in current block 
   TF=TF_Look_Up(n,k)   % compute TF for current BF (indep. of  block #) 
   Input_1 = Blk_Pntr + n*BF_Step  % compute pointer to first input to BF 
   Input_2 = Input_1 + BF_Span  % compute pointer to second input to BF 
   BF_In_1 = x(Input_1)   % retrieve input #1 to the BF 
   BF_In_2 = x(Input_2)*TF   % retrieve input #2 and apply TF 
   BF_Out_1 = BF_In_1 + BF_In_2  % compute BF output #1 
   BF_Out_2 = BF_In_1 –  BF_In_2  % compute BF output #2 
   x(Input_1)=BF_Out_1   % store BF outputs back in input array 
   x(Input_2)=BF_Out_2 
  end on n      % end of loop over BFs in Block 
 end on m      % end of loop over Blocks in Stage 
end on k        % end of loop over Stages 
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 Computation of the twiddle factors requires computation of sines and cosines, as 
is seen from Euler’s formula, namely 
 

),/2sin()/2cos(
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where j is the imaginary unit number ( 1−=j ),  the first line is by definition of the 
twiddle factor and the second line is by Euler’s formula.  Remember that we only need to 
compute the twiddle factors for half the values of m, namely m = 0, 1, 2, …, (N/2) –1, 
rather than all the way to m = N –1.  These sines and cosines are needed at uniformly 
spaced angles (i.e., spacing of ∆θ = 2π/N ), and that fact can be used to find an efficient 
way to compute them recursively.  This recursion is based on the following trigonometry 
identities: 
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This is applied to compute sine and cosine at some multiple of ∆θ by recognizing that 

θθθ ∆+∆−=∆ )1(mm  and using the trig identities to write 
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Thus, if we have already computed sine and cosine of θ∆ , we can use them to define a 
recursive computation for the sines and cosines needed for the twiddle factors.  Defining 

)sin( θθ ∆=∆S , )cos( θθ ∆=∆C ,  )cos()( θ∆= mmC , and  )sin()( θ∆= mmS    we have 
the recursions between adjacent angles for the twiddle factors 
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Now note that for m = 0 the values of the sine and cosine are known to be 
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and can be used to initialize the recursion.  Once the values of C(m) and S(m) are 
computed by the recursion, then the twiddle factors can be computed using Euler’s 
formula as 

).()( mjSmCW m
N −=  
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Thus, the computation of the twiddle factors can be done using the pseudo-code shown 
below, which requires only two calls to computationally expensive trigonometric 
subroutines; the rest are computed through the computationally inexpensive recursion.  
 

 

1.2.2.3 Twiddle Factor Indexing 
As the 8-pt example FFT above showed, the indexing of the twiddle factors from 

the pre-computed list has a definite structure.  This section will describe this structure.  
Note from Figure 6 that the structure of the twiddle factors is the same for every block in 
a stage; thus, the twiddle factor indexing structure depends only on the current stage.  
Also, the number of different twiddle factors needed in each block is equal to the number 
of butterflies in the block (i.e., one twiddle factor per butterfly).  From Figure 7 notice 
that in each stage, the needed twiddle factors follow a uniform angular progression.  
Thus, the key to the twiddle factor structure is determining the angular step between 
twiddle factors as a function of the stage index.  Generalizing from Figure 7 we see that 
the first stage needs a single twiddle factor of 10 =NW ; the second stage needs two 
different twiddle factors, namely 0

NW  and 4/N
NW ; the third stage needs four twiddle 

factors, namely 0)8/0(
N

N
N WW =× , 8/)8/1( N

N
N

N WW =× , 4/)8/2( N
N

N
N WW =× , and 

8/3)8/3( N
N

N
N WW =× ; etc.  Thus we see that at the kth (indexed origin-0) stage we need k2  

twiddle factors chosen uniformly spread in angle from the set of all the N/2 needed 
twiddle factors (i.e., 0

NW , 1
NW , 2

NW , …, )12/( −N
NW .  Equivalently, we are choosing k2  

equally spaced indices from the set of indices 0, 1, 2, … , N/2 –1; thus, the step between 
these indices must be TF Index Step = )1(2/2/)2/( += kk NN .  Thus, the required indices 
into the twiddle factor table are m×(TF Index Step) = )1(2/ +kmN  for m = 0, 1, 2, … , 2k–1.   

1.2.2.4 Pseudo-Code for FFT 
 
Notes:  

Pre-Computation of the Twiddle Factors 
 
Del_Theta = 2π/N    % Compute the angle increment 
C_Del = cos(Del_Theta)    % Compute cosine of angle increment; multiplier used in recursion 
S_Del = sine(Del_Theta)    % Compute sine of angle increment; multiplier used in recursion 
C(0) = 1      % Compute initial cosine to initialize recursion 
S(0) = 0      % Compute initial sine to initialize recursion 
TF_List(0)=1 
for m = 1 to (N/2 – 1)    % Loop over needed TFs; Only need N/2 TFs, not all N of them 
 C(m) = C_Del*C(m-1) – S_Del*S(m-1) % Compute mth cosine value via the recursion 
 S(m) = C_Del*S(m-1)  + S_Del*C(m-1) % Compute mth sine value via the recursion 
     TF_List(m) = C(m) – j*S(m)   % Compute mth TF (See below for discussion of complex 
#s) 
end on m     % end of loop over needed TFs 
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1. This pseudo-code assumes that the input array is already in bit-reversed order (see 
Section 1.2.3 for details of bit reversal) 

2. This pseudo-code does not check that the length of the signal data is a power of two; 
the actual code produced may need to do that since this FFT algorithm will NOT 
work for signal lengths that are not a power of two.   

3. The indexing in this pseudo-code does NOT handle the fact that complex numbers 
typically have their real and imaginary parts stored in consecutive memory locations; 
instead, it assumes that the real and imaginary parts are stored as a single unit.  That 
is, it is assumed that the data and twiddle factors are stored as arrays of complex 
numbers. 

 

Pseudo-Code for FFT  
 
%% Input signal data is in array called Data, in bit-reversed order 
 
%% TF_List has been computed prior to entering this code 
 
%%%%%%%     Stage/Block/Butterfly Loops     %%%%% 
for k = 0 to [log2(N) – 1]     % Loop over stages 
 Num_Blks_Stage = N/2(k+1)   % compute # of blocks for current stage 
 Num_BFs_Block = 2k    % compute # of butterflies/block in current stage 
 BF_Span = 2k     % compute span of butterflies in current stage 
 Blk_Step = 2(k+1)    % compute step between blocks in current stage 
 BF_Step = 1     % define step between BFs in current block 
 TF_Index_Step = N/2(k+1)     % compute the step between TF indices for this stage 
 for m = 0 to Num_Blks_Stage–1   % Loop over blocks in current stage 
          Blk_Pntr = m*Blk_Step   % compute pointer to beginning of current block 
  for n = 0 to Num_BFs_Block–1   % Loop over butterflies in current block 
   TF_Index = n*TF_Index_Step % compute the index to the TF for this BF 
   TF=TF_List(TF_Index)  % look-up in the pre-comp. TF_List the TF for this BF 
   Input_1 = Blk_Pntr + n*BF_Step  % compute pointer to first input to BF 
   Input_2 = Input_1 + BF_Span  % compute pointer to second input to BF 
   BF_In_1 = Data(Input_1)   % retrieve input #1 to the BF 
   BF_In_2 = Data(Input_2)*TF   % retrieve input #2 and apply TF 
   BF_Out_1 = BF_In_1 + BF_In_2  % compute BF output #1 
   BF_Out_2 = BF_In_1 –  BF_In_2  % compute BF output #2 
   Data(Input_1)=BF_Out_1   % store BF outputs back in input array 
   Data(Input_2)=BF_Out_2 
  end on n      % end of loop over BFs in Block 
 end on m      % end of loop over Blocks in Stage 
end on k        % end of loop over Stages 
 
%% Result of FFT is in the array called Data, in sequential order of the DFT, i.e. X(0), X(1), … X(N-1). 

Pseudo-Code Box 1: FFT Code (w/o Bit-Reversal Indexing) 
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1.2.2.5 Storing and Computing with Complex Numbers 
Some comments are in order on the fact that the numbers that have to be dealt 

with in an FFT are complex-valued.  The values computed above for the sines and 
cosines (i.e., S(m) and C(m) ) are real-valued numbers.  The twiddle factors are (in 
general) complex-valued numbers, in that they have a real part and an imaginary part.  In 
an implementation it is customary to store the real and imaginary parts of complex 
numbers in adjacent memory locations.  Thus, when storing the sequence of the complex-
valued twiddle factors TF(m) = C(m) – j S(m) for m = 0, 1, 2, … , N/2 – 1 it is customary 
to store them in sequential memory locations as C(0), −S(0), C(1), −S(1), C(2), −S(2), … 
C(N/2 – 1), −S(N/2 – 1).  Likewise, the input signal data is complex-valued and therefore 
should be stored similarly as alternating between real and imaginary parts.  Thus, all 
multiplications and additions that are specified in these algorithms must be complex 
additions and multiplications.  Complex addition consists simply of adding real part to 
real part to get the real part of the result and adding imaginary part to imaginary part to 
get the imaginary part of the result.  Complex multiplication consists of the following: 

 
)()()()( 212121212211 IRRIjIIRRjIRjIR ++−=+×+  

 
Thus, for example, if a signal sample’s real and imaginary parts are stored in sequential 
memory locations as XR and XI  and they must be multiplied by twiddle factors stored in 
sequential memory locations as C(m) and −S(m), then the product gets stored in 
sequential memory locations as [XR C(m) +  XI S(m)] for the real part of the product and 
[XI C(m) – XR S(m)] for the imaginary part of the product.  
 Important Note:  The indexing schemes given in the pseudo-code above DO 
NOT incorporate the indexing needed to handle complex numbers stored as sequential 
pairs of real and imaginary parts.  However, the changes needed should be obvious and 
straightforward. 
 

1.2.3 Bit Reversal Pseudo-Code 
There are many ways to implement the bit-reversed indexing needed for the FFT, 

and in fact an active area of research today is the development of efficient bit-reversal 
techniques that are tailored to the memory structures of today’s computer architectures.  
In high-throughput cutting-edge implementations the implementation of the bit reversal 
part of the FFT algorithm is crucial.  However, for the application here it is felt that a 
“garden variety” method will be suitable.  This is believed because (1) the application is 
not a high-throughput case due to the fact that the FFT result is intended for human 
viewing not further processing, and, most importantly, (2) the bit-reversed indices are 
used for computing several FFTs and therefore their overhead is spread over these 
multiple FFTs, making the minimization of the overhead less critical.  Furthermore, 
without a detailed evaluation of the memory/computer architecture to be used it is 
impossible to perform a valid tradeoff between the various competing bit-reversal 
methods.   

There are two main steps here: (1) compute the bit-reversed indices, and (2) use 
those indices to reorder a block of signal data to be applied to the FFT.  The basic need 
for bit reversal was discussed in 1.2.1.  The implementation presented here relies on a 
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simple recursion known as Horner’s recursion that allows efficient evaluation of 
polynomials.  Let k = 0, 1, 2, 3, …, N–1, where N=2n, be the index of the signal samples 
and let k~  be the corresponding bit-reversed index for the data array (the ~ symbol 
graphically evokes the idea of reversal).  Then let the n-bit binary representation of k be 
kn-1 kn-2 … k3 k2 k1 k0, from MSB to LSB.  Then, the n-bit binary representation of k~  is k0 
k1 k2  k3… kn-2  kn-1, from MSB to LSB.  Thus, we can write  

 
,222222~ 0

1
1

2
1

3
3

2
2

1
1

0 −−
−−−− ++++++= nn

nnnn kkkkkkk   
 
which can be viewed as a polynomial (with coefficients given by the  ki) evaluated at the 
value 2.  Thus, we can use Horner’s recursion to rewrite this in a more computationally 
efficient way 
 

));))2(2(2(2(2~
012321  kkkkkkk nnn ++++++= −−−  

 
for clarity, an example for n = 7 gives 
 

))))).2(2(2(2(2(2~
0123456 kkkkkkkk ++++++=  

 
This technique is used in the pseudo-code given below for computing the bit-reversed 
indices. 
 

Pseudo-Code for Computing Bit Reversed Indices via Horner's Method 
 
%% We want to bit reverse the indices 0 to N-1, where N=2n 
%% Note: implement multiply (divide) by two via shift left (right) 
 
for k=0 to (N-1)       % Loop over indices of signal samples 
            temp = k    % set current index value 
 k_tilde=0    % initialize reversed index to zero 
 for i=0 to (n-2)   % Loop over the bits for Horner’s Recursion  
  if LSB(temp)=1  % check if LSB of temp is set 
       k_tilde=k_tilde+1  % if so, add 1 to k_tilde 
  end if 
  k_tilde=2*k_tilde  % make next higher power in  Horner’s Recursion 
  temp = temp/2   % shift right on temp 
 end on i    % End loop over bits 
 if LSB(temp)=1   % check if LSB of temp is set 
      k_tilde=k_tilde + 1   % if so, add in last term of Horner’s Recursion 
 end if 
               k_tilde_array(k)=k_tilde 
end on k     % End loop over indices of signal 
 
%%%  k_tilde_array now holds the bit reversed indices 
%%%  These BR’d indices are then used to reorder the signal samples for the FFT input array 
 
Pseudo-Code Box 2: Compute Bit-Reversed Indices 
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