
Note Set #9
• Using ZT to Analyze DT LTI Systems
• Reading Assignment: Sect. 3.5 of Proakis & Manolakis
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Contains x[n], x[n-1],…

This system is causal, we won’t 
have x[n+1], x[n+2], etc. here
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Transient and Steady-State Responses

Assuming zero ICs and using the convolution property:
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H(z) = transfer function

We can use the ZT to get an idea of what to expect the output of an LTI 
system will look like.
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General result: Get output’s ZT 
by multiplying TF by input’s ZT.
But…  we can study this further 

to get key insight!!
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For simplicity assume Xz(z) = Ez (z)/Fz (z)
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Some 
Polynomial 
that “falls 

out of” PFE
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Transient Response…Decays if |pi| < 1 Steady State 
Response

For simplicity…  assume distinct poles

So… if all the poles are inside the UC then the Transient response decays and 
is not that interesting for most signal processing applications.
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Causality & ROC

Recall that a causal system with 0 ICs can not give a non-zero output until the 
input becomes non-zero.

Since h[n] is the output due to δ[n] with zero ICs we can see that a causal 
system must have

[ ] 0 0h n n= ∀ <

We also know that for a causal sequence the ROC of its ZT is the exterior of a 
circle.  Thus the ROC of Hz(z) for a causal system is the exterior of a circle.

An LTI System is causal if an only if the ROC of its transfer 
function Hz(z) is the exterior of a circle of radius R < ∞, 

including the point z = ∞.
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Stability & ROC
We’ve already discussed that a necessary and sufficient condition for an LTI 
system to be stable is for the impulse response to be absolutely summable:
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From this we can derive insight into the impact of the ROC on stability.  Start 
from definition of Hz(z):
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Now evaluating this inequality on the unit circle shows
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Thus…  If the system is BIBO stable then the UC is in the ROC.
Can prove the reverse is true as well.

An LTI System is BIBO Stable if an only if the UC is in the ROC.
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Causal System ROC

For a causal system… we now the ROC is the outside of a circle.  

Thus, that circle must be inside the Unit Circle…

And… since the poles of a stable system must be outside the ROC…

UC

An LTI Causal System is BIBO Stable if an only 
if all the poles are strictly inside the UC.

Poles will be inside this circle… 
with at least 1 pole on the circle.  For 

stability the poles must be strictly 
inside the UC… not on the UC.
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On the previous slide we said explicitly that the poles must be strictly inside 
the UC for stability.  To show that we can’t have a pole on the unit circle and 
still have BIBO all we need is one counter example. 

Counter Example:  Consider a system with a single pole ( ) zH z
z a

=
−

Consider an input with ZT ( ) zX z
z b

=
−

For simplicity let a,b be real and positive

Then the output ZT is ( ) ( ) ( ) z zY z H z X z
z a z b

   = =    − −   
For a ≠ b  we find that the IZT of this will have the form

[ ] [ ] [ ]n ny n Aa u n Bb u n= +

But let 0 < b ≤ 1 so the input is bounded

Stability & Poles on the Unit Circle

Remains bounded even if 
pole is on the UC

For a = b  we find that the IZT of this will have the form

[ ] [ ] [ ]n ny n Aa u n Bna u n= +

Bounded only if pole is 
strictly inside the UC

Unbounded if pole is 
on the UC

Exercise: Consider the case where there are two poles @ z = 1
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Summary of Stability Results

• …BIBO stable if all poles lie strictly inside the UC
• …BIBO marginally stable if there are some single poles on the UC but 

no poles outside the UC
• …BIBO unstable if there is at least one pole outside the UC and/or at 

least one multiple pole on the UC

A causal system is 
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Pole – Zero Cancellation
Sometimes when finding Yz(z) the combination of z-transforms leads to a pole 
and a zero at the same location in the plane.  

This can happen either from: 
• the interaction of Hz(z) and Xz(z) 
• when cascading multiple systems together 

− which we saw leads to a composite transfer function that is the 
product of the cascaded transfer function

Example:  Cascade of two systems  
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First system is NOT stable!!!
The total transfer function is
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• In theory this kind of “stabilization” by pole cancellation works…
• But… in practice, numerical precision issues in the implementation may 

result in imperfect cancellation…  so beware of this!
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Example:  Similarly we can have pole-zero cancellation between the system 
and the input 5 1
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The transfer function is: 

11
3( ) 1zX z z−= −The ZT of the input is: 

So… after cancellation the output ZT is 11
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And.. then the time-domain form for the output signal is 

( )1
2[ ] [ ]ny n u n=

Note… from our earlier studies we would expect the output to include an 
exponential term for each pole in its transient response.  But here we only see 
one  of the pole’s exponential…

This input only “excites” one of the two poles!
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Stability of 2nd-Order Systems
As we’ll see later… 2-pole sub-systems form the building blocks for realizing 
higher-order systems.  Thus, having explicit insight into the stability of 2nd order 
systems is very useful.

2nd Order Diff. Eq.: 1 2 0[ ] [ 1] [ 2] [ ]y n a y n a y n b x n= − − − − +

2nd Order Transfer Function: 
2

0 0
1 2 2

1 2 1 2

( )
1

b b zH z
a z a z z a z a− −= =

+ + + +

2nd Order Poles: 2
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These provide the 
“Stability Triangle”
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aa = … provides the dividing curve between real roots 

and complex roots 
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