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In Section 3.3 of the textbook they state that there are important 
cases when the ZT is a rational function of z.  At first they use a 
generic *signal* x[n] and its ZT X z(z)…  However, the most 
likely time you’ll see a ZT that is a rational function is when 
talking about the transfer function H z(z) of an LTI system I will 
stress that here right from the beginning.

First we’ll see how/why we get a transfer function that 
is a rational function of z… then we will see what 
impact that has on the system behavior and how wew
can use that insight to understand how system’s will 
behave…
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Finding the Transfer Function from Difference Eq.
The concept of Transfer Function arises in the context of zero initial conditions. 
So… imagine that we have a Diff. Eq. with zeros ICs and we take its ZT using the 
time shift property…

1 0 1[ ] [ 1] ... [ ] [ ] [ 1] ... [ ]N My n a y n a y n N b x n b x n b x n M          

Delay Prop. 
& Algebra

Algebra

 
 

1

0 1

[ ] [ 1] ... [ ]

[ ] [ 1] ... [ ]
N

M

ZT y n a y n a y n N

ZT b x n b x n b x n M

    

     
ZT

1
1

1
0 1

( ) 1 ...

( ) ...

N
N

M
M

Y z a z a z

X z b b z b z

 

 

    
     

1
0 1

1
1

( )

...( ) ( )
1 ...

M
M

N
N

H z

b b z b zY z X z
a z a z

 

 

   
     

So… can just 
write H(z) by 
inspection of 

D.E. coefficients!

More generally there can be an a0 but 
we can always normalize it to 1 3/16



Poles and Zeros of Transfer Function
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Define the polynomials A(z) and B(z) so that:  ( ) ( )( )
( )

N M B zH z z
A z



Assume there are no common roots in the numerator B(z) and denominator A(z).  
(If not, assume they’ve been cancelled and redefine B(z) and A(z)  accordingly) 

Poles of H(z): The values on the complex z-plane where |H(z)| 

Zeros of H(z): The values on the complex z-plane where |H(z)| = 0

The roots of the denominator polynomial A(z) determine N poles.

The roots of the Numerator polynomial B(z) determine M zeros.

The term z(N – M) gives poles/zeros at the origin according to:
• If  N > M :  N – M  zeros @ Origin
• If  N < M  :  M – N  poles @ Origin

Plotting the 
locations of 
the poles and 
zeros on the z-
plane is called 
the Pole-Zero 
plot of the TF
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Conjugate 
PairUsing MATLAB too make a Pole-Zero Plot

>> zplane([2 1],[1 -(1/sqrt(2)) 1/4])

p =1 zero 
at origin 

Coeff. Vectors 
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Example: Finding Poles and Zeros

Pole-Zero Plot
x marks poles
o marks zeros
(Use a number 
next to the symbol 
to indicate 
“repeated” roots)
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Poles and the ROC
By its very definition, the transfer function magnitude goes to ∞ at a pole:

Let z = p be a pole of Hz(z).  Then lim ( )z

z p
H z


 

That means that the summation in the ZT definition does not converge at 
z values that are poles.

Thus… the ROC must be devoid of poles!!
 zIm

 zRe

ROC: No Poles!

In fact… there will be poles right on the edge of the ROC…  If there 
were not then the ROC can be extended without hitting  a z-point where 
Hz(z) →∞!!! 
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Example: Poles and ROC

We already found the poles (and zeros) for this system:  

Clearly… this is a causal system: put in δ[n] (with zero ICs) and recursively 
solve for h[n] and you’ll see that it is causal.

So… we know that the ROC will be outside a circle.  And… that the edge of 
the ROC will be at the poles

x

x

Changed from previous example

Re{z}

Im{z}
To find the radius of the 
ROC edge’s circle… find the 
magnitude of the poles:
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Relationship: Transfer Function and Freq. Resp.


 jez

zHH )()( If all poles are inside the UC

Recall:  DTFT = ZT evaluated on Unit Circle… if UC is inside ROC

Fact: For causal systems UC is inside ROC if all poles are inside UC
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H freqz(num, denom, omega)
plot(omega/pi, abs(H))
plot(omega/pi, angle(H))
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must put any zero bi into the vector

must put any zero ai into the vector

We saw how to use freqz before to plot the Frequency Response… this just shows 
how to plot the Frequency Response from the Transfer Function coefficients: 
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|H(z)|
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And we know that the 
Frequency Response is 
just the Transfer 
Function evaluated on 
the Unit Circle.
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Zero @ z = 0

Poles @  z = 0.8ej0.3

Pole-Zero Plot For This H(z)
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Visualizing Relationship Between TF & FR
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Now… plot just those values on the unit circle:

This shows the Frequency Response 
H() where  is the angle around the 
unit circle… this explains why H() is 
a periodic function of 

Now…“Cut” here… 
and unwrap

This shows after it has been 
“cut and unwrapped”… and 
plotted on the  axis:
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Effect of Poles & Zeros on Frequency Response of DT filters

Figure from B.P. Lathi, Signal Processing and Linear Systems

Note: Including a 
pole or zero at the 
origin …

Placing a 
zero at … …makes 

|H()| = 0

Placing more 
zeros/poles…

…doesn’t change 
the magnitude but 
does change the 
phase

… gives sharper 
transitions.
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Cascade of Systems
Suppose you have a “cascade” of two systems like this:
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Thus, the overall frequency response/transfer function is the product of those 
of each stage:
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Obviously, this generalizes to a cascade of N systems:
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Impulse Response of System
Sometimes looking at how a system responds to the impulse function (i.e., 
delta sequence) [n] can tell much about a system.  Hitting a system with [n] 
is lot like ringing a bell to hear how it sounds…

LTI 
D-T system

ICs = 0
n

[n]
n

h[n]

Note: If system is causal, 
then h[n] = 0 for n < 0

The symbol h[n] means 
“the impulse response”.

Noting that the ZT of [n] = 1 and using the properties of the transfer function 
and the Z transform:

  1[ ] ( ) [ ]h n Z H z Z n  1[ ] ( )h n Z H z

From PFE and Poles/Zeros we see that a TF like this: 

…will have an impulse response with terms like this:
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Some simplifying 
assumptions 
made here!

Now… we almost always want this to decay (like a bell!): all poles |pi| < 1

 [ ] ( )h n IDTFT H 
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From our knowledge of poles and the ZT we can now visualize the impulse 
response h[n] of some simple systems: 
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Book doesn’t 
show zeros!!
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