EEO 401
 Digital Signal Processing Prof. Mark Fowler

Note Set \#6

- Intro to Z-Transform
- Reading Assignment: Sect. 3.1 of Proakis \& Manolakis

Discrete-Time System Relationships

Time Domain

$\underline{Z} /$ Freq Domain

$$
y[n]=-\sum_{i=1}^{p} a_{i} y[n-i]+\sum_{i=0}^{q} b_{i} x[n-i]
$$

$$
\text { Unit Circle } \quad H^{z}(z)=Z\{h[n]\}
$$

$$
z=e^{j \omega}
$$

If UC in ROC

$$
H^{\mathrm{f}}(\omega)=\operatorname{DTFT}\{h[n]\}
$$

Transforms for Systems

DTFT of Impulse Reponse $=$ Frequency Response of System

$$
H^{\mathrm{f}}(\omega)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \quad \underline{\underline{\text { Discrete}} \text { Time }} \underset{\underline{\text { Fourier Transform }}}{ }
$$

ZT of Impulse Reponse = Transfer Function of System
$H^{z}(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}$

For Zero ICs Only

$$
\begin{gathered}
Y^{\mathrm{f}}(\omega)=H^{\mathrm{f}}(\omega) X^{\mathrm{f}}(\omega) \\
Y^{\mathrm{z}}(z)=H^{\mathrm{z}}(z) X^{\mathrm{z}}(z)
\end{gathered}
$$

Q: If both FR \& TF reduce system analysis to multiplication why do we need both??
A: TF is a generalization of FR... it allows

- Greater insight into system characteristics... it is a more powerful tool!!
- Application to wider class of systems (namely... unstable systems)
- Easily extended to allow handling ICs (more of a "Controls" topic than DSP)

Q: If TF is more powerful why even consider FR?
A: FR provides a better connection back to "reality"

DTFT is also used to analyze signals... ZT is not really a useful signal analysis tool

- Based on Fourier ideas... connects back to how systems modify sinusoids

Z-Transform Definition

Given a D-T signal $x[n]-\infty<n<\infty$ the DTFT of $x[n]$ is given by:

$$
D T F T: X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \quad(\text { Periodic in } \omega \text { with period } 2 \pi)
$$

Issue: The sum in the DTFT doesn't converge for some signals... In particular, for the impulse response of an unstable system.

So, to extend applicability to such cases we include a decay into the transform:

Z-Transform (Two-Sided)

$$
X^{z}(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad z \text { is complex-valued }
$$

The "one-sided" ZT is used more in control systems... less in DSP.

So... the Z-Transform gives a complex-valued function on a complex plane called the "z-plane"

Plot Magnitude on complex z-plane. (Rarely actually plot phase on z-plane)

For the Z-Transform we'll need to divide the plane into two parts:

- those values of z inside the unit circle
- those values of z outside the unit circle

Region of Convergence (ROC)

Remember that the whole motivation for the Z-Transform was to give a transform that "converges" for a wider class of signals than does the DTFT

$$
\begin{aligned}
& \text { DTFT }: X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& Z T: \quad X^{z}(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} Z^{-n} \triangleq\left(\alpha e^{j \omega}\right)^{-n}
\end{aligned}
$$

So... given a signal for which the DTFT does not converge the ZT will converge for only certain values of z (clearly in this case it can’t converge for those z with $|z|=1!!!$)

So... in general then... for each signal $x[n]$ there will only be certain values of z for which the ZT summation converges (or sometimes none at all!).

Define: ROC $=$ Set of all z values for which the ZT sum converges $(|X(z)|<\infty)$
Each signal has its own region of convergence.

Example of Finding the ZT: Unit Impulse Sequence

$$
\delta[n]= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

$$
\begin{aligned}
Z\{\delta[n]\} & =\sum_{n=-\infty}^{\infty} \delta[n] z^{-n} \\
& =\cdots+0 \times z^{2}+0 \times z^{1}+1 \times z^{0}+0 \times z^{-1}+0 \times z^{-2}+\cdots
\end{aligned}
$$

$$
=1
$$

ROC = all complex \#'s

$$
\delta[n] \leftrightarrow 1 \quad \text { ROC }=\{\text { all } z\}
$$

There's really only one term here so convergence is not an issue!

This result and many others are on Table of Z Transforms available on my website...

Z Transform of Finite-Duration Signals

For finite-duration signals the ZT is easy to find and the ROC is also easy to find because there are not infinitely many terms in the summation!
Example: $x[n]=\{1,2,5,7,0,1\}$

$$
\begin{aligned}
Z\{x[n]\} & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =\cdots+0 z^{1}+1 z^{0}+2 z^{-1}+5 z^{-2}+7 z^{-3}+1 \\
& =1+2 z^{-1}+5 z^{-2}+7 z^{-3}+z^{-5} \\
& \quad \text { ROC }=\text { entire } z \text { plane except } z=0
\end{aligned}
$$

Finite Duration \& Causal

$$
=\cdots+0 z^{1}+1 z^{0}+2 z^{-1}+5 z^{-2}+7 z^{-3}+0 z^{-4}+1 z^{-5}+0 z^{-6}+\cdots
$$

Example: $x[n]=\{1,2,5,7,0,1\}$

$$
\begin{aligned}
Z\{x[n]\} & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =1 z^{2}+2 z^{1}+5+7 z^{-1}+z^{-3}
\end{aligned}
$$

Finite Duration \& "Bi-Directional"

ROC = entire z plane except $z=0$ and $z=\infty$

Example: $x[n]=\{1,2,5,7,0,1\}$

$$
\begin{aligned}
Z\{x[n]\} & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =1 z^{5}+2 z^{4}+5 z^{3}+7 z^{2}+1
\end{aligned}
$$

Finite Duration \&
Anti-Causal
ROC $=$ entire z plane

$$
\text { except } z=\infty
$$

Summary of ROC for Finite-Duration Signals

Type of Finite-Duration Signal	ROC
Causal	All z except $z=0$
Anti-Causal	All z except $z=\infty$
Bi-Directional	All z except $z=\infty \& z=0$

Z Transform of Infinite-Duration Signals

For infinite-duration signals finding the ZT is harder and finding the ROC requires some attention!

Example of Finding the ZT: Unit Step $u[n]$
$U^{z}(z)=\sum_{n=0}^{\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}=\frac{z}{z-1}$
Using standard result for "geometric sum"... converges when $|z|>1$

Example of Finding the ZT: Causal Exponential

$$
x[n]=a^{n} u[n]
$$

Using standard result for "geometric sum"... converges if $|a / z|<1$
Again using geometric sum: $\quad X^{z}(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{a}{z}\right)^{n} \stackrel{1}{1-a z^{-1}}=\frac{z}{z-a}$
Note: The example for $u[n]$ is just

$$
\text { ROC }=\text { all } z \text { such that }|z|>|a|
$$ a special case of this example

$$
a^{n} u[n] \leftrightarrow \frac{z}{z-a}=\frac{1}{1-a z^{-1}} \quad \text { ROC }=\text { all } z \text { such that }|z|>|a|
$$

General Result for ROC of Causal Signal

$$
X^{z}(z)=\sum_{n=0}^{\infty} x[n] z^{-n}=x[0] z^{0}+x[1] z^{-1}+x[2] z^{-2}+x[3] z^{-3}+\cdots
$$

$$
\text { Now use } Z \triangleq \alpha e^{j \omega}
$$

$$
X^{z}(z)=x[0]+x[1] \alpha^{-1} e^{-j \omega}+x[2] \alpha^{-2} e^{-j 2 \omega}+x[3] \alpha^{-3} e^{-j 3 \omega}+\cdots
$$

With a little thought we can guess that it should be the value of α that will be important to ensure that the terms in this sum get "small enough" "fast enough" so that the summation converges.

And... we can actually show that mathematically:

$$
\begin{aligned}
\left|X^{z}(z)\right| & =\left|\sum_{n=0}^{\infty} x[n] z^{-n}\right| \leq \sum_{n=0}^{|a+b| \leq|a|+|b|}\left|x[n] z^{-n}\right|=\sum_{n=0}^{\infty}|x[n]|\left|z^{-n}\right| \\
& =\sum_{n=0}^{\infty}|x[n]|\left|\alpha^{-n}\right| \underbrace{e^{-j \omega n}}_{=1}=\sum_{n=0}^{\infty} \frac{|x[n]|}{\alpha^{n}} \\
z & \triangleq \alpha e^{j \omega}, \alpha \geq 0
\end{aligned}
$$

So only α (magnitude of z) matters when finding z values to ensure $|X(z)|<\infty$

So... $\left|X^{z}(z)\right| \leq \sum_{n=0}^{\infty} \frac{|x[n]|}{\alpha^{n}}$
And... the slower $|x[n]|$ decays the faster we need $1 / \alpha^{n}$ to decay. Note that if we find some value of α that works, all values larger than it will also work.

Thus, if there is a ROC then there is some smallest α that works and all z with magnitudes larger than it will be in the ROC.

Note that the result for a finite-duration causal signal is consistent with this, where $R_{c}=0$

General Result for ROC of Anti-Causal Signal

$X^{z}(z)=\sum_{n=-\infty}^{0} x[n] z^{-n}=x[0] z^{0}+x[-1] z^{1}+x[-2] z^{2}+x[-3] z^{3}+\cdots$ Now use $Z \triangleq \alpha e^{j \omega}$

$$
X^{z}(z)=x[0]+x[-1] \alpha^{1} e^{j \omega}+x[-2] \alpha^{2} e^{j 2 \omega}+x[-3] \alpha^{3} e^{j 3 \omega}+\cdots
$$

And... we can actually show that mathematically:

$$
\begin{aligned}
\left|X^{z}(z)\right| & =\left|\sum_{n=-\infty}^{0} x[n] Z^{-n}\right|=\left|\sum_{n=0}^{\infty} x[-n] Z^{n}\right| \leq \sum_{n=0}^{\infty}\left|x[-n] z^{n}\right|=\sum_{n=0}^{\infty}|x[-n]|\left|z^{n}\right| \\
& =\sum_{n=0}^{\infty}|x[-n]|\left|\alpha^{n}\right| \underbrace{e^{j \omega n}}_{=1}=\sum_{n=0}^{\infty}|x[-n]| \alpha^{n}
\end{aligned}
$$

So... $\left|X^{z}(z)\right| \leq \sum_{n=0}^{\infty}|x[-n]| \alpha^{n}$
And... the slower $|x[-n]|$ decays the faster we need α^{n} to decay. Note that if we find some value of α that works, all values smaller than it will also work.

Thus, if there is a ROC then there is some largest α that works and all z with smalller larger than it will be in the ROC.

Note that the result for a finite-duration anti-causal signal is consistent with this, where $R_{a}=\infty$

General Result for ROC

Any general signal can be decomposed into one part that is causal and one part that is anti-causal. So it is no surprise that in general the ROC would be a ringshaped (annular) region:

$$
R O C=\left\{z\left|R_{c}<|z|<R_{a}\right\}\right.
$$

Note that if for the given signal we have that $\mathrm{Ra}<\mathrm{Rc}$ then the two individual regions (causal \& anti-causal) do not overlap and there is no region of z such that both parts converge. Then we say that there is no ROC for that signal and we can not apply the ZT to that signal.

Summary of Results for ROC

Causal Signal

Bi-Directional Signal

Connection between ZT and DTFT:

If the ROC contains the UC then the ZT converges for $z=e^{j \omega}$ and that means that the DTFT exists. So then if we have the ZT we can easily convert it into a DTFT by replacing z by $e^{j \omega}$

Example:

$$
x[n]=a^{n} u[n] \quad \leftrightarrow \quad X^{z}(z)=\frac{z}{z-a}=\frac{1}{1-a z^{-1}} \quad \text { ROC }=\text { all } z \text { such that }|z|>|a|
$$

If $|a|<1$ then ROC includes the UC and the DTFT of this signal is

$$
X^{z}(z)=\frac{1}{1-a z^{-1}} \Rightarrow \quad X^{\mathrm{f}}(\omega)=\left.X^{z}(z)\right|_{z=e^{j \omega}}=\left.\frac{1}{1-a z^{-1}}\right|_{z=e^{j \omega}}=\frac{1}{1-a e^{-j \omega}}
$$

Discrete-Time System Relationships

Time Domain

$\underline{Z} /$ Freq Domain

$$
y[n]=-\sum_{i=1}^{p} a_{i} y[n-i]+\sum_{i=0}^{q} b_{i} x[n-i]
$$

$$
\text { Unit Circle } \quad H^{z}(z)=Z\{h[n]\}
$$

$$
z=e^{j \omega}
$$

If UC in ROC

$$
H^{\mathrm{f}}(\omega)=\operatorname{DTFT}\{h[n]\}
$$

