
EEO 401
Digital Signal Processing

Prof. Mark Fowler

Note Set #31
• Linear Phase FIR Design – Optimum Equiripple

(Parks-McClellan)
• Reading: Sect. 10.2.4 – 10.2.6 of Proakis & Manolakis

1/20

2/20

Motivation
The window method and the frequency sampling method have a major drawback:

• Can’t precisely control ωp & ωs and δp & δs

Require iterative tweaking to get desired specs

The optimal equiripple method allows easy numerical design that can meet
specs on band edges and band ripples with essentially the lowest order FIR filter!

Define ()drH ω

,{ []}()r b nH ω

Amplitude of desired filter frequency response

Amplitude of designed filter frequency response

Coefficients of design

Define Weighted Error: { []} ,{ []}() () () ()b n dr r b nE W H Hω ω ω ω = −

Design to satisfy:
{ []}over { []}

min max ()b nb n PB SB
E

ω
ω

∈ ∪

Passbands & Stopbands

Minimize
Largest Error

Weight… can emphasize
certain band

3/20

Minimize Largest
Error Here

Minimize Largest
Error Here

,{ []}over { []}
min max () () ()dr r b nb n PB SB

W H H
ω

ω ω ω
∈ ∪

 −

, passband
()

1, stopband
s pW

δ δ ω
ω

ω

∈
=

∈

4/20

Design Basis
This approach was proposed and solved by Parks & McLellan in 1972…

… three clever math “tricks” were used to develop a design algorithm
1. Find a single common form for all four linear phase cases

˗ Enables a single algorithm that works for all four cases
2. Exploit a theorem from “Chebyshev” approximation theory

˗ “Alternation Theorem”: gives an easy to apply necessary and sufficient
condition for optimal Chebyshev approximation

˗ Specifies how many “extremal error” frequencies there must be and that
the error alternates sign over these frequencies

3. Exploit an iterative algorithm from “Chebyshev” approximation theory
˗ “Remez Exchange Algorithm”: given the current “guess” of the extremal

frequencies… it updates to better ones… converges to solution.

We’ll discuss trick #1 here because it provides the FIR designer insight into
characteristics important to the designer.

The other two we do not discuss… they are details only needed if you are
implementing the design algorithm (which is available in MATLAB).

5/20

Common Form for Four Linear Phase FIR Cases
Symmetry \ Length M Odd M Even
Symmetric Case #1 Case #2
Antisymmetric Case #3 Case #4

Case #1: Symmetric Impulse Response & Lengh M Odd
[] [1]h n h M n= − − For this case the book shows (sect 10.2.1) that

[] ()()
(3) 2

1
2

0

() (1) 2 2 []cos
M

M
r

n
H h M h n nω ω

−
−

=

= − + −∑

Let k = (M – 1)/2 – n and define

[]
[]
(1) 2 , 0

[]
2 (1) 2 , 1,2, , (1) 2

h M k
a k

h M k k M

− ==
− − = −

()
(1) 2

0

() []cos
M

r
k

H a k kω ω
−

=

= ∑

6/20

Case #2: Symmetric Impulse Response & Lengh M Even
[] [1]h n h M n= − − For this case the book shows (sect 10.2.1) that

()()
(1) 2

1
2

0

() 2 []cos
M

M
r

n
H h n nω ω

−
−

=

= −∑

Let k = M /2 – n and define [][] 2 2 , 1,2, , (1) 2b k h M k k M= − = −

()
2

1

() []cos (1 2
M

r
k

H b k kω ω
=

= −∑

() ()
()2 1

0

() cos 2 []cos
M

r
k

H b k kω ω ω
−

=

= ∑

Define 1
2[0] [1]

[] 2 [] [1], 2,3, , (2) 2

[(2) 1] 2 [2]

b b

b k b k b k k M

b M b M

=

= − − = −

− =

7/20

Case #3: Anti-Symmetric Impulse Response & Lengh M Odd
[] [1]h n h M n= − − − For this case the book shows (sect 10.2.1) that

()()
(3) 2

1
2

0

() 2 []sin
M

M
r

n
H h n nω ω

−
−

=

= −∑

Let k = (M – 1)/2 – n and define [][] 2 (1) 2 , 1,2, , (1) 2c k h M k k M= − − = −

()
(1) 2

1

() []sin
M

r
k

H c k kω ω
−

=

= ∑

() ()
(3) 2

0

() sin []cos
M

r
k

H c k kω ω ω
−

=

= ∑

See Eq. (10.2.57) in
textbook

8/20

Case #4: Anti-Symmetric Impulse Response & Lengh M Even
[] [1]h n h M n= − − − For this case the book shows (sect 10.2.1) that

()()
(2) 1

1
2

0

() 2 []sin
M

M
r

n
H h n nω ω

−
−

=

= −∑

Let k = M /2 – n and define [][] 2 2 , 1,2, , 2d k h M k k M= − =

()
2

1
2

1

() []sin ()
M

r
k

H d k kω ω
=

= −∑

() ()
(2) 1

0

() sin 2 []cos
M

r
k

H d k kω ω ω
−

=

= ∑

See Eq. (10.2.62) in
textbook

9/20

Compare all the forms:

()

() ()
()

() ()

() ()

(1) 2

0

2 1

0

(3) 2

0

(2) 1

0

() 1 []cos

() cos 2 []cos

() sin []cos

() sin 2 []cos

M

r
k

M

r
k

M

r
k

M

r
k

H a k k

H b k k

H c k k

H d k k

ω ω

ω ω ω

ω ω ω

ω ω ω

−

=

−

=

−

=

−

=

=

=

=

=

∑

∑

∑

∑

Case #1

Case #2

Case #3

Case #4

() () ()rH Q Pω ω ω=

()
0

() []cos
L

k
P k kω α ω

=

= ∑

1, Case #1
cos(2), Case #2

Q()
sin(), Case #3
sin(2), Case #4

ω
ω

ω
ω

=

Common
Form!

10/20

And… plug common form into the Error Equation:

{ []} ,{ []}() () () ()b n dr r b nE W H Hω ω ω ω = −

{ []} { []}
ˆ ˆ() () () ()n dr nE W H Pα αω ω ω ω = −

{ []} { []}

{ []}

() () () () ()

()() () ()
()

n dr n

dr
n

E W H Q P

HW Q P
Q

α α

α

ω ω ω ω ω

ωω ω ω
ω

 = −

= −

Now… revisit the Error Equation:

Since Q(ω) does not depend on the filter coefficients:

Common
Form!

Common
Form!

Contains Q(ω)
based on

specific case

11/20

% Lowpass Filter Design Specifications:
% Passband cutoff frequency = 0.3π rad/sample
% Stopband cutoff frequency = 0.31π rad/sample
% · At least 60 dB of stopband attenuation
% · No more than 1 dB passband ripple

rp=1; rs=60; % specify passband ripple & stopband attenuation in dB
f_spec=[0.3 0.31]; % specify passband and stopband edges in normalized DT freq
AA=[1 0]; %%% specfies that you want a lowpass filter
dev=[(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)]; % parm. needed by design routine
Fs=2; % “Fake” value for Fs so our design is done in terms of normalized DT freq

[N,fo,ao,w]=firpmord(f_spec,AA,dev,Fs);
% estimates filter order and gives other parms needed to run firpm

b=firpm(N,fo,ao,w); % Computes the designed filter coefficients in vector b

The resulting value for the order for this design is 385!!

12/20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-160

-140

-120

-100

-80

-60

-40

-20

0

Normalized DT Frequency Ω/π

|H
(Ω

)|
(d

B
)

firpm design
Order = 385

fir2 design
Order = 385

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

-35

-30

-25

-20

-15

-10

-5

0

5

Normalized DT Frequency Ω/π

|H
(Ω

)|
(d

B
)

firpm design has 1 dB of ripple.
Could reduce spec… but would

need longer filter. E.g., for rp = 0.1
we’d get Order = 544

firpm can design outstanding
filters… but for the most
stringent design specs they can
be VERY long!

13/20

Let’s look at pole-zero plot for a simpler firpm-designed filter…

>> zplane(b,1)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

28

Real Part

Im
ag

in
ar

y
P

ar
t

In Stopband: zeros placed right on UC
In Passband: zeros “line” the UC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80
-60
-40
-20

0

Normalized DT Frequency Ω/π

|H
(Ω

)|
(d

B
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

Normalized DT Frequency Ω/π

<H
(Ω

)
ra

di
an

s Linear Phase…
all designs by
firpm have this
very desirable
trait!!!

14/20

Design of Equiripple FIR Differentiators

A particular filter that is sometimes needed is a filter that computes samples of
the derivative of the underlying CT signal whose samples you have.

FIR
Differentiator

x[n]x(t)
ADC DAC

y[n]
()() dx ty t

dt
=

Desired!

From properties of Laplace Transform for CT signals we know that a derivative
in the time domain corresponds to multiplication by s in the s-domain

()LH s s= ()FH jω ω=
CT rad/sec

So… trying to mimic this with a DT filter we have
f () , (2 -periodic)dH jω ω π ω π π= − ≤ ≤

Desired

15/20

To explore this… compute its impulse response
f1[] ()

2

1
2

cos()

j n
d d

j n

h n H e d

j e d

n
n

π ω

π

π ω

π

ω ω
π

ω ω
π

π

−

−

=

=

=

∫

∫
Antisymmetric: hd[–n] = –hd[n]

Thus… use Case #3 (M odd) or Case #4 (M even) linear phase FIR filters
[] [1]h n h M n= − − −

Both cases satisfy Hr(0) = 0 as needed for the differentiator

However, for M odd we have Hr(π) = 0, which is not allowable for a “true”
differentiator. But… in practice we often only need to meet the desired
response over a limited range:

f
,

() (2 -periodic)
0,

p p
d

p

j
H

ω ω ω ω
ω π

ω ω

− ≤ ≤=
≤

M Odd or
Even OK

16/20

b = firpm(n,f,a,w,'ftype') specify a filter type, where 'ftype' is

• 'differentiator', for type III and type IV filters, using a special weighting
technique
For nonzero amplitude bands, it weights the error by a factor of 1/f so that
the error at low frequencies is much smaller than at high frequencies. For
FIR differentiators, which have an amplitude characteristic proportional to
frequency, these filters minimize the maximum relative error (the
maximum of the ratio of the error to the desired amplitude).

Design of Equiripple Differentiators via firpm

17/20

Example 10.2.5 in Text

passband edge stopband edge

M = 60

18/20

Design of Equiripple FIR Hilbert Transformers
As we saw in the section on Equivalent Lowpass Signals… a Hilbert
Transform is often used in generating the result.

So… trying to mimic this with a DT filter we have

f , 0
() (2 -periodic)

, 0d

j
H

j
ω π

ω π
π ω

− < ≤
= − < <

Desired

To explore this… compute its impulse response

f

0

0

2

1[] ()
2

1
2

2 sin (/ 2) , 0

0, 0

j n
d d

j n j n

h n H e d

je d je d

n n
n

n

π ω

π

πω ω

π

ω ω
π

ω ω
π

π
π

−

−

=

 = −

≠=

 =

∫

∫ ∫

Antisymmetric: hd[–n] = –hd[n]

19/20

Both antisymmetric Cases have H(0) = 0 and M Odd gives H(π) = 0
… which are troublesome for the all-pass nature of the HT.

So… we usually spec lower and upper cutoff frequencies for the desired
amplitude response:

f () 1, 0dr l uH ω ω ω ω π= < ≤ ≤ <

Design of Equiripple Differentiators via firpm

b = firpm(n,f,a,w,'ftype') specify a filter type, where 'ftype' is

• 'hilbert', for linear-phase filters with odd symmetry (type III and type IV)
The output coefficients in b obey the relation b(k) = –b(n+2 –k), k = 1,
...,n+1. This class of filters includes the Hilbert transformer, which has a
desired amplitude of 1 across the entire band.

For example,
h = firpm(30,[0.1 0.9],[1 1],'hilbert');

designs an approximate FIR Hilbert transformer of length 31.

20/20

Example 10.2.6 in Textbook
M = 31

upper edgelower edge

	EEO 401 �Digital Signal Processing�Prof. Mark Fowler
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

