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Definition of Linear Phase
Usually we define the phase of Hf(ω) based on writing it in magnitude and phase 
form like this:

{ }farctan ( )f f( ) ( ) j HH H e ωω ω=

Strictly ≥ 0

However, this causes some problems of discontinuous phase when Hf(ω) goes 
“through” zero on the complex plane.

This causes some problems but we can fix them if we are careful!
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This issue can be addressed by modifying our “magnitude” – phase view to be 
“amplitude” – phase view

Whereas “magnitude” is strictly non-negative… “amplitude” can be negative.
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For our example:

A(ω) ϕ(ω)

Fig. from Porat’s DSP Book

Thus we can fix these jumps of π by 
using this amplitude rather than 
magnitude

• Usually, though we just plot 
the regularly computed 
phase and visually account 
for these jumps-by-π
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Even with this new definition there can still be jumps by 2π
• These can be thought of as occurring when the phase function crosses 

from –π to +π (or vice versa).
• Keep in mind that any angle remains effectively the same with an 

integer multiple of 2π added or subtracted
• Thus, these jumps can be fixed “by eye” or in MATLAB via the 

unwrap command

Simplistic Example of  using “unwrap” command
2 f 2 f( ) ( ) ( ) 2z jH z z H e Hωω ω ω− −= ⇒ = ⇒ ∠ = −

As ω goes past π/2 the angle goes more negative than –π Numerical 
computations 

“wrap” these back 
into –π to + π
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So finally we get to the point where we can define what “linear phase” means! 

After correcting for the π and 2π jumps and also adding/subtracting 2π to 
put the angle at ω = 0 in [0, π)…. 

We say the filter is linear phase if the resulting phase is –ωτp such that we 
can write f ( ) ( ) pjH A e ωτω ω −=

for A(ω) a real amplitude function and τp a real number  

If…  τp is an integer then this linear phase will impart a delay of τp samples
τp is not an integer then this linear phase will impart an “interpolated”  

delay of τp samples



An FIR filter of length M for input x[n] and output y[n] is given by
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Comparing to the convolution form 
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Symmetry and Linear Phase for FIR Filters



An FIR filter has linear phase if its impulse response (filter coefficients) has 
symmetry:

[ ] [ 1 ], 0,1, , 1h n h M n n M= ± − − = −
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[0] [1] [2] [3] [4] [5] [6] [7] [8] 9h h h h h h h h h M = Odd Length

+: Symmetric
–: Anti-Symmetric

For Odd Length, Anti-Symmetric 
need h[(M-1)/2] = 0



Look at this simple example:
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/2 )]
Converting to frequency response, the z terms in parentheses get converted 
into cosines via Euler… so the part in the [ ] becomes a real-valued amplitude 
function and we get

f ( 1)/2( ) ( ) j M
rH H e ωω ω − −=

Linear Phase



Using the symmetry/anti-symmetry condition in the transfer function gives
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We can now do a similar thing in general for the symmetric/anti-symmetric 
FIR:
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Following steps similar to our example we get

[ ] [ 1 ]h n h M n= − − f ( 1)/2( ) ( ) j M
rH H e ωω ω − −=

[ ] [ 1 ]h n h M n= − − − f ( 1)/2 /2( ) ( ) j M
rH H e ω πω ω − − +=

So… both types of symmetry give linear phase!

See textbook for form for Hr(ω)



Start with the transfer function form for the symmetric FIR filters… 
Sub in z-1 for z & multiply both sides by z –(M – 1) gives

( 1) 1( ) ( )Mz H z H z− − − = ±

Symmetry of zero locations for linear-phase FIR filters



Uses of Symmetric vs Anti-Symmetric FIR Filters

Note that
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Thus… if the filter is Anti-Symmetric [ ] [ 1 ]h n h M n= − − −

we must have f (0) 0H =

So… Anti-Symmetric FIR filters are not suited for LP filters.

Symmetric FIR filters are suited for LP filters as well as HP, etc.
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