
Note Set #27
• General Issues for Design of Digital Filters
• Reading: Sect. 10.1 & 10.2.1 of Proakis & Manolakis
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Ideal D-T Filters
Here is the so-called “ideal filter” frequency response for a Lowpass Filter

Cut-off frequency = B rad/sample

As always with DT… only need to look here
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Linear Phase

There are also highpass, bandpass, and bandstop filters; 
and there are other more specialized types
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Same as for CT…. It is non-causalWhy can’t an ideal filter exist in practice??

For the ideal LPF f
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Now consider applying a delta function as its input:  x[n] = δ[n]  ↔ Xf(ω) = 1

Then the output has DTFT: 

[ ]sincB B nπ π

f f f
2( ) ( ) ( ) ( ) [ , ) repeats elsewheredj n

BY X H p e ωω ω ω ω ω π π−= = ∈ −

From the DTFT Table: 2 ( 2 )B
k

p kω π
∞

=−∞

+∑

Linear Phase Imparts Delay

So the response to a delta (applied at n = 0) is: [ ][ ] ( / )sinc ( / )( )dh n B B n nπ π= −

Ideal 
LPF

n

x[n] = δ[n]
[ ]h n

n

… …
dn

Starts before input starts…  
Thus, system is non-causal!
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So we’ve seen that a causal filter can’t give that perfect rectangular frequency 
response of the ideal filter.

But…. What can it give???   The Paley-Wiener Theorem answers that…

Paley-Wiener Theorem

If h[n] has finite energy and h[n] = 0 ∀n < 0  then
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Conversely, if |Hf(ω)| is square integrable and satisfies this… then
there exists a phase θ(ω) so that

f f ( )( ) ( ) jH H e θ ωω ω=

has an IDTFT h[n] that is causal.
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So what does the Paley-Wiener Theorem actually say about what shapes we 
can have for frequency response of a causal filter?? 
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Clearly if |Hf(ω)| = 0 on any interval then |ln(|Hf (ω)|)| is infinite on that interval

 So can’t have a perfect stop band

But… it is possible for |Hf (ω)| = 0 at finitely many points… just not over intervals.

Rational Transfer Function
Just because the P-W Theorem says that there is a causal filter that exists for 
some desired |H(ω)| does not mean it has a rational transfer function.

Recall that our focus is on DT systems with rational transfer functions:
 Standard-Form Difference Eq
 Poles & Zeros
 Block Diagram

Our Goal: Find rational approximate to desired Hf
d(ω)
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Practical Filter Specification
Lowpass Filter Specification

To make filter “more ideal”: 
δp→ 0, δs→ 0, Ωs →Ωp
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Highpass Filter Specification

To make filter “more ideal”: δp→ 0, δs→ 0, Ωs →Ωp

Pass-bandStop-band Transition 
band
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To make filter “more ideal”: δp→ 0, δsi→ 0, Ωsi →Ωpi

Bandpass Filter Specification

Pass-band Stop-bandTrans 
band

Trans 
band

Stop
band
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To make filter “more ideal”: δp→ 0, δsi→ 0, Ωsi →Ωpi

Bandstop Filter Specification

Stop-band Pass-bandTrans 
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Trans 
band

Pass
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Our Goal: Find rational approximate to desired Hf
d(ω)

Some Issues to Consider:
• Achieve the specs (band edges and ripples) with the least 

complexity
 Complexity does have links to the “delay” through the 

filter
• FIR vs IIR filters
 FIR can achieve the desirable linear phase response
 IIR can achieve magnitude specs with lower complexity

• Recursive vs. Non-Recursive
 Connections to FIR vs IIR
 Impact on complexity

• Stability of filter
 FIR filters are inherently stable
 IIR filter design needs attention to stability
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