

State University of New York

EEO 401 Digital Signal Processing Prof. Mark Fowler

<u>Note Set #26</u>

- FFT Algorithm: Divide & Conquer Viewpoint
- Reading: Sect. 8.1.2 & 8.1.3 of Proakis & Manolakis

Divide & Conquer Approach

The previous note set's FFT development was somewhat ad hoc.

Here we develop a more formalized & generalized approach that can be used to develop other FFT approaches.

To illustrate the basic ideas consider the case of an *N*-pt DFT where *N* is not prime can be factored into two integer factors: N = LM

Can always zero-pad out to appropriate number

We now can use either of two mappings from 2-D indices l,m to the actual time index n:

$$n = Ml + m$$

"Row-Wise Input Mapping"

$$n = l + mL$$

"Column-Wise Input Mapping"

We use one or the other of these mappings to convert the input to a matrix and then take DFTs along either the rows or columns.

We now can use either of two mappings from 2-D indices p,q to the actual DFT result index k: k = Mp + q

$$k = Mp + q$$

"Row-Wise Output Mapping"

$$k = p + qL$$

"Column-Wise Output Mapping"

3/15

Now to illustrate how to use this machinery... Use

- Column-wise input mapping
- Row-wise output mapping k =

$$\begin{cases} n = l + mL \\ k = Mp + q \end{cases} \quad X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

$$X[p,q] = \sum_{m=0}^{M} \sum_{l=0}^{L-1} x[l,m] W_{N}^{(Mp+q)(l+mL)}$$

$$= W_{N}^{MLmp} W_{N}^{mLq} W_{N/L}^{Mpl} W_{N/M}^{lq}$$

$$= W_{N}^{Nmp-1} W_{N/L}^{mlq} W_{N/L}^{Mpl} W_{N/M}^{lq}$$

$$X[p,q] = \sum_{l=0}^{L} \left\{ W_{N}^{lq} \left[\sum_{m=0}^{M-1} x[l,m] W_{N/L}^{mq} \right] W_{N/M}^{pl} Compute M-pt DFTs of Rows$$

$$\stackrel{\triangleq G[l,q]}{=} X[p,q] = C_{N}^{L-1} Compute L-pt DFTs of Colns}$$

Figure 8.1.3 Computation of N = 15-point DFT by means of 3-point and 5-point DFTs.

Although this LOOKS more complicated... it is actually more efficient!

Application to Develop Dec-In-Time Radix-2 FFT Let $N = 2^{\nu}$

We apply the divide-and-conquer approach with M = N/2 & L = 2

Application to Develop Dec-In-Frequency Radix-2 FFT $N = 2^{\nu}$

We apply the divide-and-conquer approach with M = 2 & L = N/2

<u>N = 8 First Stage of Dec-in-Freq FFT</u>

9/15

Butterfly Structure: DiT vs DiF

3 Different Configurations of D-in-Time FFT

Can <u>NOT</u> be done "in-place"

3 Different Configurations of D-in-Freq FFT

Can <u>NOT</u> be done "in-place"

Implementation Issues

- We've looked at two radix-two methods.
 - Other radices: 4 & 8
 - split radix (2 and 4)

 TABLE 8.2
 Number of Nontrivial Real Multiplications and Additions to

 Compute an N-point Complex DFT

	R	Real Multiplications				Real Additions			
- N	Radix 2	Radix 4	Radix 8	Split Radix	Radix 2	Radix	Radix 8	Split Radix	
16	24	20		20	152	148		148	
32	88			68	408			388	
64	264	208	204	196	1,032	976	972	964	
128	712			516	2,504			2,308	
256	1,800	1,392		1,284	5,896	5,488		5,380	
512	4,360		3,204	3,076	13,566	-	12,420	12,292	
1,024	10,248	7,856		7,172	30,728	28,336		27,652	
Source: Extracted from Duhamel (1986)									

- In-Place computation requires only 2*N* memory locations
 - But complicates the indexing & control operations
 - Doubling the memory to 4N locations can be advantageous
 - Reduces complexity of indexing & control
 - Allows natural ordering for both input and output
- In general, many factors come into play when determining best method
 - Parallelism, HW vs SW, fixed-point vs floating-point, etc.
- Also... no need to develop distinct IFFT algorithm

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N} = \frac{1}{N} \left[\sum_{n=0}^{N-1} X^*[k] e^{-j2\pi kn/N} \right]^* \quad \Longrightarrow \quad IDFT\{X[k]\} = \frac{1}{N} conj\{DFT\{X^*[k]\}\}$$

Two Tricks for Real-Valued Signals

1. Efficient DFT of two Real-Valued Signals

Let $x_1[n]$ and $x_2[n]$ be real-valued signals, each length N

Form: $x[n] \triangleq x_1[n] + jx_2[n]$

Then we have
$$x_1[n] = \frac{x[n] + x^*[n]}{2}$$
 & $x_2[n] = \frac{x[n] - x^*[n]}{2j}$

Thus

$$X_{1}[k] = \frac{DFT\{x[n]\} + DFT\{x^{*}[n]\}}{2} \qquad \& \qquad X_{2}[k] = \frac{DFT\{x[n]\} - DFT\{x^{*}[n]\}}{2j}$$

But... DFT{ $x^*[n]$ } = $X^*[N-k]$

$$X_{1}[k] = \frac{1}{2} \Big[X[k] + X^{*}[N-k] \Big] \qquad \& \qquad X_{2}[k] = \frac{1}{2j} \Big[X[k] - X^{*}[N-k] \Big]$$

2. Efficient DFT of 2N-pt Real-Valued Signal

Let g[n] be a real-valued signal of length 2N

Then define: $x_1[n] \triangleq g[2n]$ & $x_2[n] \triangleq g[2n+1]$ And: $x[n] = x_1[n] + jx_2[n]$

From Trick #1 we have

$$X_{1}[k] = \frac{1}{2} \Big[X[k] + X^{*}[N-k] \Big] \qquad \& \qquad X_{2}[k] = \frac{1}{2j} \Big[X[k] - X^{*}[N-k] \Big]$$

But using ideas from Dec-in-Time FFT we know

$$G[k] = \sum_{n=0}^{N-1} g[2n] W_{2N}^{2nk} + \sum_{n=0}^{N-1} g[2n+1] W_{2N}^{(2n+1)k}$$
$$= \sum_{n=0}^{N-1} x_1[n] W_{2N}^{2nk} + \sum_{n=0}^{N-1} x_2[n] W_{2N}^{(2n+1)k}$$

So then we get $G[k] = X_1[k] + W_{2N}^k X_2[k], \quad k = 0, 1, ..., N-1$ $G[k+N] = X_1[k] - W_{2N}^k X_2[k], \quad k = 0, 1, ..., N-1$

So computing one *N*-pt DFT of *x*[*n*] gets us the 2*N*-pt DFT of *g*[*n*]!