
Note Set #26
• FFT Algorithm: Divide & Conquer Viewpoint
• Reading: Sect. 8.1.2 & 8.1.3 of Proakis & Manolakis

EEO 401
Digital Signal Processing

Prof. Mark Fowler

2/15

The previous note set’s FFT development was somewhat ad hoc.
Here we develop a more formalized & generalized approach that can be used
to develop other FFT approaches.

To illustrate the basic ideas consider the case of an N-pt DFT where N is not
prime can be factored into two integer factors: N LM=

Can always zero-pad out to appropriate number

We now can use either of two mappings from 2-D indices l,m to the actual time
index n:

n Ml m= + n l mL= +
“Row-Wise Input Mapping” “Column-Wise Input Mapping”

We use one or the other of these mappings to convert the input to a matrix and
then take DFTs along either the rows or columns.

We now can use either of two mappings from 2-D indices p,q to the actual DFT
result index k: k Mp q= + k p qL= +

“Row-Wise Output Mapping” “Column-Wise Output Mapping”

Divide & Conquer Approach

3/15

n Ml m= +

n l mL= +

“Row-Wise Input Mapping”

“Column-Wise Input Mapping”

DFTs Down
Columns

DFTs Across
Rows

4/15

Now to illustrate how to use this machinery… Use
• Column-wise input mapping
• Row-wise output mapping

1

0

[] []
N

kn
N

n
X k x n W

−

=

= ∑n l mL= +
k Mp q= +

1
()()

0 0

[,] [,]
M L

Mp q l mL
N

m l
X p q x l m W

−
+ +

= =

= ∑∑

1 mq plNmp
N L N MN

MLmp mLq Mpl lq
N N N N

W WW

W W W W
== =

=

1

0 0

[,]

[,]

[,]

[,] [,]
L M

lq mq pl
N N L N M

l m

F l q

G l q

X p q

X p q W x l m W W
−

= =

=

 =

∑ ∑

Compute M-pt DFTs of Rows

Apply Twiddle Factors

Compute L-pt DFTs of Colns

5/15

Illustration of this Approach

Although this LOOKS more complicated… it is actually
more efficient!

Compute M-pt
DFTs of Rows

Apply
Twiddle
Factors

Compute L-pt
DFTs of Colns

6/15

Application to Develop Dec-In-Time Radix-2 FFT Let N = 2v

We apply the divide-and-conquer approach with M = N/2 & L = 2

n l mL= + “Column-Wise Input Mapping”

DFTs Across
Rows

Compute N/2-pt
DFTs of Rows

Apply Twiddle Factors

Compute 2-pt
DFTs of Colns

Now repeat this for each
N/2-pt DFT… Etc., Etc., Etc.

x[0] x[2] x[4] x[N – 2]

x[1] x[3] x[5] x[N – 1]

7/15

Application to Develop Dec-In-Frequency Radix-2 FFT N = 2v

We apply the divide-and-conquer approach with M = 2 & L = N/2

n l mL= + “Column-Wise Input Mapping”

DFTs Across Rows

x[0]

x[1]

x[N/2 - 1]

x[N/2]
x[N/2+1]

x[N–1]

g1[n]

g2[n]

k
NW

X[0]
X[2]

X[N–2]

X[1]
X[3]x[0]

x[1]

x[N/2 – 1]

x[2]

x[N/2]

x[N/2 + 1]

x[N/2 + 2]

x[N – 1]

2-pt
DFT

N/2-pt
DFT

Compute N/2-pt
DFTs of Columns

Apply Twiddle
Factors

Compute 2-pt
DFTs of Rows

Now repeat
this for each

N/2-pt DFT…
Etc., Etc., Etc.

8/15

N = 8 First Stage of Dec-in-Freq FFT

9/15

Complete Dec-in-Freq FFT for N = 8 DFT Values are in Bit
Reversed Order!

10/15

Butterfly Structure: DiT vs DiF

Butterfly Structure: Dec-in-Time

Butterfly Structure: Dec-in-Freq

11/15

N=8 D-in-Time FFT w/ BR Inputs
Can be done “in-place”

N=8 D-in-Time FFT w/ BR Outputs
Can be done “in-place”

N=8 D-in-Time FFT w/ both sides “Normal Order”
Can NOT be done “in-place”

Diagrams from R. Lyon,
Understanding Digital Signal
Processing, 3rd Ed., Prentice-
Hall, 2011

3 Different Configurations of D-in-Time FFT

Writes over Data
Needed Later!!

12/15

N=8 D-in-Freq FFT w/ BR Inputs
Can be done “in-place”

N=8 D-in-Freq FFT w/ BR Outputs
Can be done “in-place”

N=8 D-in-Freq FFT w/ both sides “Normal Order”
Can NOT be done “in-place”

Diagrams from R. Lyon,
Understanding Digital Signal
Processing, 3rd Ed., Prentice-
Hall, 2011

3 Different Configurations of D-in-Freq FFT

Writes over Data
Needed Later!!

13/15

Implementation Issues

• We’ve looked at two radix-two
methods.
- Other radices: 4 & 8
- split radix (2 and 4)

• In-Place computation requires only 2N memory locations
- But complicates the indexing & control operations
- Doubling the memory to 4N locations can be advantageous

o Reduces complexity of indexing & control
o Allows natural ordering for both input and output

• In general, many factors come into play when determining best method
- Parallelism, HW vs SW, fixed-point vs floating-point, etc.

• Also… no need to develop distinct IFFT algorithm

*1 1
2 / * 2 /

0 0

1 1[] [] []
N N

j kn N j kn N

n n
x n X k e X k e

N N
π π

− −
−

= =

 = =
∑ ∑ { } { }{ }*1[] []IDFT X k conj DFT X k

N
=

14/15

Two Tricks for Real-Valued Signals

1. Efficient DFT of two Real-Valued Signals

Let x1[n] and x2[n] be real-valued signals, each length N

1 2[] [] []x n x n jx n+

Then we have
* *

1 2
[] [] [] [][] & []

2 2
x n x n x n x nx n x n

j
+ −

= =

Form:

Thus
{ } { } { } { }* *

1 2

[] [] [] []
[] & []

2 2
DFT x n DFT x n DFT x n DFT x n

X k X k
j

+ −
= =

But… DFT{ x*[n]} = X*[N – k]

* *
1 2

1 1[] [] [] & [] [] []
2 2

X k X k X N k X k X k X N k
j

 = + − = − −

15/15

2. Efficient DFT of 2N-pt Real-Valued Signal

1 2[] [2] & [] [2 1]x n g n x n g n +

Let g[n] be a real-valued signal of length 2N

Then define:

And: 1 2[] [] j []x n x n x n= +

From Trick #1 we have

* *
1 2

1 1[] [] [] & [] [] []
2 2

X k X k X N k X k X k X N k
j

 = + − = − −

But using ideas from Dec-in-Time FFT we know
1 1

2 (2 1)
2 2

0 0
1 1

2 (2 1)
1 2 2 2

0 0

[] [2] [2 1]

[] []

N N
nk n k

N N
n n
N N

nk n k
N N

n n

G k g n W g n W

x n W x n W

− −
+

= =

− −
+

= =

= + +

= +

∑ ∑

∑ ∑

So then we get
1 2 2

1 2 2

[] [] [], 0,1, , 1

[] [] [], 0,1, , 1

k
N

k
N

G k X k W X k k N
G k N X k W X k k N

= + = −

+ = − = −

So computing one N-pt DFT of x[n] gets us the 2N-pt DFT of g[n]!

	EEO 401 �Digital Signal Processing�Prof. Mark Fowler
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

