
Note Set #26
• FFT Algorithm: Divide & Conquer Viewpoint
• Reading: Sect. 8.1.2 & 8.1.3 of Proakis & Manolakis
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The previous note set’s FFT development was somewhat ad hoc.
Here we develop a more formalized & generalized approach that can be used 
to develop other FFT approaches.

To illustrate the basic ideas consider the case of an N-pt DFT where N is not 
prime can be factored into two integer factors: N LM=

Can always zero-pad out to appropriate number

We now can use either of two mappings from 2-D indices l,m to the actual time 
index n:

n Ml m= + n l mL= +
“Row-Wise Input Mapping” “Column-Wise Input Mapping”

We use one or the other of these mappings to convert the input to a matrix and 
then take DFTs along either the rows or columns.

We now can use either of two mappings from 2-D indices p,q to the actual DFT 
result index k: k Mp q= + k p qL= +

“Row-Wise Output Mapping” “Column-Wise Output Mapping”

Divide & Conquer Approach 
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n Ml m= +

n l mL= +

“Row-Wise Input Mapping”

“Column-Wise Input Mapping”

DFTs Down
Columns

DFTs Across
Rows
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Now to illustrate how to use this machinery…  Use
• Column-wise input mapping
• Row-wise output mapping 
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Compute M-pt DFTs of Rows

Apply Twiddle Factors 

Compute L-pt DFTs of Colns
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Illustration of this Approach

Although this LOOKS more complicated… it is actually 
more efficient!

Compute M-pt
DFTs of Rows

Apply 
Twiddle 
Factors 

Compute L-pt
DFTs of Colns
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Application to Develop Dec-In-Time Radix-2 FFT Let N = 2v

We apply the divide-and-conquer approach with  M = N/2 & L = 2

n l mL= + “Column-Wise Input Mapping”

DFTs Across
Rows

Compute N/2-pt 
DFTs of Rows

Apply Twiddle Factors 

Compute 2-pt 
DFTs of Colns

Now repeat this for each 
N/2-pt DFT… Etc., Etc., Etc.

x[0] x[2] x[4] x[ N – 2]  

x[1] x[3] x[5] x[ N – 1]     
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Application to Develop Dec-In-Frequency Radix-2 FFT N = 2v

We apply the divide-and-conquer approach with  M = 2 & L = N/2

n l mL= + “Column-Wise Input Mapping”

DFTs Across Rows

x[0]

x[1]

x[N/2 - 1]

x[N/2]
x[N/2+1]

x[N–1]

g1[n]

g2[n]

k
NW

X[0]
X[2]

X[N–2]

X[1]
X[3]x[0]

x[1]

x[N/2 – 1]

x[2]

x[N/2]

x[N/2 + 1]

x[N/2 + 2]

x[N – 1]

2-pt 
DFT

N/2-pt 
DFT

Compute N/2-pt 
DFTs of Columns

Apply Twiddle 
Factors 

Compute 2-pt 
DFTs of Rows 

Now repeat 
this for each 

N/2-pt DFT… 
Etc., Etc., Etc.
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N = 8  First Stage of Dec-in-Freq FFT
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Complete Dec-in-Freq FFT for N = 8 DFT Values are in Bit 
Reversed Order!
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Butterfly Structure: DiT vs DiF

Butterfly Structure: Dec-in-Time

Butterfly Structure: Dec-in-Freq
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N=8 D-in-Time FFT w/ BR Inputs
Can be done “in-place”

N=8 D-in-Time FFT w/ BR Outputs
Can be done “in-place”

N=8 D-in-Time FFT w/ both sides “Normal Order”
Can NOT be done “in-place”

Diagrams from R. Lyon, 
Understanding Digital Signal 
Processing, 3rd Ed., Prentice-
Hall, 2011 

3 Different Configurations of D-in-Time FFT

Writes over Data 
Needed Later!!
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N=8 D-in-Freq FFT w/ BR Inputs
Can be done “in-place”

N=8 D-in-Freq FFT w/ BR Outputs
Can be done “in-place”

N=8 D-in-Freq FFT w/ both sides “Normal Order”
Can NOT be done “in-place”

Diagrams from R. Lyon, 
Understanding Digital Signal 
Processing, 3rd Ed., Prentice-
Hall, 2011 

3 Different Configurations of D-in-Freq FFT

Writes over Data 
Needed Later!!
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Implementation Issues

• We’ve looked at two radix-two 
methods.
- Other radices: 4 & 8
- split radix (2 and 4)

• In-Place computation requires only 2N memory locations
- But complicates the indexing & control operations
- Doubling the memory to 4N locations can be advantageous

o Reduces complexity of indexing & control
o Allows natural ordering for both input and output

• In general, many factors come into play when determining best method
- Parallelism, HW vs SW, fixed-point vs floating-point, etc.

• Also… no need to develop distinct IFFT algorithm 
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Two Tricks for Real-Valued Signals

1. Efficient DFT of two Real-Valued Signals

Let x1[n] and x2[n] be real-valued signals, each length N
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2. Efficient DFT of 2N-pt Real-Valued Signal

1 2[ ] [2 ] & [ ] [2 1]x n g n x n g n + 

Let g[n] be a real-valued signal of length 2N

Then define:

And: 1 2[ ] [ ] j [ ]x n x n x n= +

From Trick #1 we have
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But using ideas from Dec-in-Time FFT we know
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So then we get
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So computing one N-pt DFT of x[n] gets us the 2N-pt DFT of g[n]! 
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