Note Set #26

• FFT Algorithm: Divide & Conquer Viewpoint
• Reading: Sect. 8.1.2 & 8.1.3 of Proakis & Manolakis
Divide & Conquer Approach

The previous note set’s FFT development was somewhat ad hoc. Here we develop a more formalized & generalized approach that can be used to develop other FFT approaches.

To illustrate the basic ideas consider the case of an N-pt DFT where N is not prime can be factored into two integer factors: $N = LM$.

Can always zero-pad out to appropriate number.

We now can use either of two mappings from 2-D indices l,m to the actual time index n:

- $n = Ml + m$ ("Row-Wise Input Mapping")
- $n = l + mL$ ("Column-Wise Input Mapping")

We use one or the other of these mappings to convert the input to a matrix and then take DFTs along either the rows or columns.

We now can use either of two mappings from 2-D indices p,q to the actual DFT result index k:

- $k = Mp + q$ ("Row-Wise Output Mapping")
- $k = p + qL$ ("Column-Wise Output Mapping")
\[n = Ml + m \]

“Row-Wise Input Mapping”

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>(\ldots)</th>
<th>(M - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x(0))</td>
<td>(x(1))</td>
<td>(x(2))</td>
<td>(\ldots)</td>
<td>(x(M - 1))</td>
</tr>
<tr>
<td>1</td>
<td>(x(M))</td>
<td>(x(M + 1))</td>
<td>(x(M + 2))</td>
<td>(\ldots)</td>
<td>(x(2M - 1))</td>
</tr>
<tr>
<td>2</td>
<td>(x(2M))</td>
<td>(x(2M + 1))</td>
<td>(x(2M + 2))</td>
<td>(\ldots)</td>
<td>(x(3M - 1))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(L - 1)</td>
<td>(x((L - 1)M))</td>
<td>(x((L - 1)M + 1))</td>
<td>(x((L - 1)M + 2))</td>
<td>(\ldots)</td>
<td>(x(LM - 1))</td>
</tr>
</tbody>
</table>

DFTs Down Columns

\[n = l + mL \]

“Column-Wise Input Mapping”

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>(\ldots)</th>
<th>(M - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x(0))</td>
<td>(x(L))</td>
<td>(x(2L))</td>
<td>(\ldots)</td>
<td>(x((M - 1)L))</td>
</tr>
<tr>
<td>1</td>
<td>(x(1))</td>
<td>(x(L + 1))</td>
<td>(x(2L + 1))</td>
<td>(\ldots)</td>
<td>(x((M - 1)L + 1))</td>
</tr>
<tr>
<td>2</td>
<td>(x(2))</td>
<td>(x(L + 2))</td>
<td>(x(2L + 2))</td>
<td>(\ldots)</td>
<td>(x((M - 1)L + 2))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(L - 1)</td>
<td>(x(L - 1))</td>
<td>(x(2L - 1))</td>
<td>(x(3L - 1))</td>
<td>(\ldots)</td>
<td>(x(LM - 1))</td>
</tr>
</tbody>
</table>

DFTs Across Rows
Now to illustrate how to use this machinery… Use
- Column-wise input mapping \(n = l + mL \)
- Row-wise output mapping \(k = Mp + q \)

\[
X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}
\]

\[
X[p, q] = \sum_{m=0}^{M} \sum_{l=0}^{L-1} x[l, m]W_N^{(Mp+q)(l+mL)}
\]

\[
= W_N^{MLmp} W_N^{mLq} W_N^{Mpl} W_N^{lq}
\]

\[
= W_N^{Nmp} = 1 W_N^{mq} W_N^{N/l} = W_N^{pl}
\]

\[
X[p, q] = \sum_{l=0}^{L} W_N^{lq} \left[\sum_{m=0}^{M-1} x[l, m]W_N^{mq} \right] W_N^{pl}
\]

\[
= F[l, q] \triangleq G[l, q]
\]

\[
= X[p, q]
\]

Compute M-pt DFTs of Rows
Apply Twiddle Factors
Compute L-pt DFTs of Colns
Illustration of this Approach

- Compute M-pt DFTs of Rows
- Apply Twiddle Factors
- Compute L-pt DFTs of Colns

Figure 8.1.3 Computation of $N = 15$-point DFT by means of 3-point and 5-point DFTs.

Although this LOOKS more complicated… it is actually more efficient!
Application to Develop Dec-In-Time Radix-2 FFT \(\text{Let } N = 2^\nu \)

We apply the divide-and-conquer approach with \(M = N/2 \) & \(L = 2 \)

\[n = l + mL \]

“Column-Wise Input Mapping”

DFTs Across Rows

Now repeat this for each \(N/2\)-pt DFT… Etc., Etc., Etc.
Application to Develop Dec-In-Frequency Radix-2 FFT \(N = 2^v \)

We apply the divide-and-conquer approach with \(M = 2 \) & \(L = N/2 \)

\[n = l + mL \]

“Column-Wise Input Mapping”

Compute \(N/2 \)-pt DFTs of Columns

Apply Twiddle Factors

Compute 2-pt DFTs of Rows

Now repeat this for each \(N/2 \)-pt DFT... Etc., Etc., Etc.
$N = 8$ First Stage of Dec-in-Freq FFT
Complete Dec-in-Freq FFT for $N = 8$

DFT Values are in Bit Reversed Order!
Butterfly Structure: DiT vs DiF

Butterfly Structure: Dec-in-Time

Butterfly Structure: Dec-in-Freq
3 Different Configurations of D-in-Time FFT

N=8 D-in-Time FFT w/ BR Inputs

Can be done “in-place”

N=8 D-in-Time FFT w/ BR Outputs

Can be done “in-place”

N=8 D-in-Time FFT w/ both sides “Normal Order”

Can NOT be done “in-place”

Writes over Data Needed Later!!
3 Different Configurations of D-in-Freq FFT

N=8 D-in-Freq FFT w/ BR Inputs
Can be done “in-place”

N=8 D-in-Freq FFT w/ BR Outputs
Can be done “in-place”

Writes over Data Needed Later!!

N=8 D-in-Freq FFT w/ both sides “Normal Order”
Can NOT be done “in-place”

Implementation Issues

- We’ve looked at two radix-two methods.
 - Other radices: 4 & 8
 - Split radix (2 and 4)

- In-Place computation requires only $2N$ memory locations
 - But complicates the indexing & control operations
 - Doubling the memory to $4N$ locations can be advantageous
 - Reduces complexity of indexing & control
 - Allows natural ordering for both input and output

- In general, many factors come into play when determining best method
 - Parallelism, HW vs SW, fixed-point vs floating-point, etc.
- Also… no need to develop distinct IFFT algorithm

$$
x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N} = \frac{1}{N} \left[\sum_{n=0}^{N-1} X^*[k] e^{-j2\pi kn/N} \right]^*
$$

$$
IDFT \{X[k]\} = \frac{1}{N} \text{conj} \left\{ DFT \{X^*[k]\} \right\}
$$

<table>
<thead>
<tr>
<th>N</th>
<th>Radix 2</th>
<th>Radix 4</th>
<th>Radix 8</th>
<th>Split Radix</th>
<th>Radix 2</th>
<th>Radix 4</th>
<th>Radix 8</th>
<th>Split Radix</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td>152</td>
<td>148</td>
<td>148</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>88</td>
<td>68</td>
<td>408</td>
<td></td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>264</td>
<td>208</td>
<td>204</td>
<td>1,032</td>
<td>976</td>
<td>972</td>
<td>964</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>712</td>
<td>516</td>
<td>2,504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>1,800</td>
<td>1,392</td>
<td>1,284</td>
<td>5,896</td>
<td>5,488</td>
<td>5,380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>4,360</td>
<td>3,204</td>
<td>3,076</td>
<td>13,566</td>
<td>12,420</td>
<td>12,292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,024</td>
<td>10,248</td>
<td>7,856</td>
<td>7,172</td>
<td>30,728</td>
<td>28,336</td>
<td>27,652</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Extracted from Duhamel (1986).
Two Tricks for Real-Valued Signals

1. Efficient DFT of two Real-Valued Signals

Let \(x_1[n] \) and \(x_2[n] \) be real-valued signals, each length \(N \)

Form: \(x[n] \triangleq x_1[n] + jx_2[n] \)

Then we have

\[
x_1[n] = \frac{x[n] + x^*[n]}{2} \quad \text{and} \quad x_2[n] = \frac{x[n] - x^*[n]}{2j}
\]

Thus

\[
X_1[k] = \frac{\text{DFT} \{ x[n] \} + \text{DFT} \{ x^*[n] \}}{2} \quad \text{and} \quad X_2[k] = \frac{\text{DFT} \{ x[n] \} - \text{DFT} \{ x^*[n] \}}{2j}
\]

But… \(\text{DFT} \{ x^*[n] \} = X^*[N - k] \)

\[
X_1[k] = \frac{1}{2} \left[X[k] + X^*[N - k] \right] \quad \text{and} \quad X_2[k] = \frac{1}{2j} \left[X[k] - X^*[N - k] \right]
\]
2. Efficient DFT of 2N-pt Real-Valued Signal

Let \(g[n] \) be a real-valued signal of length \(2N \)

Then define: \(x_1[n] \equiv g[2n] \quad \& \quad x_2[n] \equiv g[2n+1] \)

And: \(x[n] = x_1[n] + jx_2[n] \)

From Trick #1 we have

\[
X_1[k] = \frac{1}{2} \left[X[k] + X^*[N - k] \right] \quad \& \quad X_2[k] = \frac{1}{2j} \left[X[k] - X^*[N - k] \right]
\]

But using ideas from Dec-in-Time FFT we know

\[
G[k] = \sum_{n=0}^{N-1} g[2n]W_{2N}^{2nk} + \sum_{n=0}^{N-1} g[2n+1]W_{2N}^{(2n+1)k}
\]

\[
= \sum_{n=0}^{N-1} x_1[n]W_{2N}^{2nk} + \sum_{n=0}^{N-1} x_2[n]W_{2N}^{(2n+1)k}
\]

So then we get

\[
G[k] = X_1[k] + W_{2N}^k X_2[k], \quad k = 0, 1, \ldots, N - 1
\]

\[
G[k + N] = X_1[k] - W_{2N}^k X_2[k], \quad k = 0, 1, \ldots, N - 1
\]

So computing one \(N \)-pt DFT of \(x[n] \) gets us the \(2N \)-pt DFT of \(g[n] \)!