
Note Set #25
• FFT Algorithm: Radix-2 Algorithm Development
• Reading Assignment: FFT Write Up Provided

EEO 401
Digital Signal Processing

Prof. Mark Fowler

2/17

Fast Fourier Transform (FFT) – Efficient Means to Compute DFT

Recall the DFT equation: ∑
−

=

− −==
1

0

/2 1...,,2,1,0][][
N

n

Nknj NkenxkX π

1 complex multiply to
compute each term…
So N complex multiplies

N-1 complex Additions
to compute the sum.

Must do these N times to compute all N of the DFT points

So… to compute the DFT directly requires:
• N2 complex multiplies
• N(N-1) ≈ N2 complex additions

To compute the DFT using a “standard” FFT:
• (N/2) log2N complex multiplies
• (N/2) log2N complex additions

We say this is
O(N2)

We say this is
O(N log2N)

3/17

≈ 2 orders of
magnitude
for N = 1000

DFT

FFT

≈ 3 orders of
magnitude for
N = 10000

4/17

Motivational Anecdote

The way the FFT computes the DFT efficiently is by exploiting certain inherent
structures in the DFT equation that allow efficient computation.

There is a story about Carl Gauss when he was still in primary school that
motivates this kind of thing.

His teacher asked the class to add together the numbers from 1 to 100.
(Presumably this was to keep the class busy for some time… not sure why he
wanted to keep them busy!)

As the other students started what appeared to require lots of work little Gauss
thought for a few seconds and then wrote down the answer: 5050.

1 2 3 4 5 ….. ….. 95 96 97 98 99 100

The trick is to exploit the structure and sum pairs from the outside-in:

101
101
101

There are 55 such sums so the answer is 55 x 101 = 5050

5/17

2-pt DFT Structure
Just as Gauss used 2-pt sums to simplify a 100-pt sum… A key building
block in most FFT algorithms is a 2-pt DFT:

1
2 /2

0

[] [] 0,1j kn

n
X k x n e kπ−

=

= =∑

0 0 0 1

1 0 1 1

[0] [0] [1] [0] [1]
[1] [0] [1] [0] [1]

j j

j j

X x e x e x x
X x e x e x x

π π

π π

− × − ×

− × − ×

= + = +

= + = −

–1

x[0]

Multiplier Summer

Summer

x[1]

X[0] = x[0] + x[1]

X[1] = x[0] – x[1]

6/17

∑
−

=

−==
1

0

1,,2,1,0)()(
N

n

kn
N NkWnxkX

Nj
N eW /2π−=

An N–point DFT can be written as the (weighted) sum of two N/2–point DFTs (one DFT of
the even-indexed samples and one DFT of the odd-indexed samples) as:

1,,2,1,0)()(

)()(

)12()2()(

DFTpoint 2/

1)2/(

0
2/

DFTpoint 2/

1)2/(

0
2/

1)2/(

0

2
1)2/(

0

2

1)2/(

0

)12(
1)2/(

0

2

−=+=

+=

++=

−

−

=

−

−

=

−

=

−

=

−

=

+
−

=

∑∑

∑∑

∑∑

NkWnxWWnx

WnxWWnx

WnxWnxkX

N

N

n

kn
No

k
N

N

N

n

kn
Ne

N

n

nk
No

k
N

N

n

nk
Ne

N

n

nk
N

N

n

nk
N

Each N/2-pt DFT really need only be evaluated for k = 0, 1, 2, … , N/2 –1,
because (WN/2)kn is periodic with period N/2.

(Radix-2 Decimate-In-Time)FFT Development
N = 2v, v is integer

7/17

4-Point
DFT

x(0)

x(2)
x(4)
x(6)

4-Point
DFT

x(1)

x(3)
x(5)
x(7)

W8
0

W8
1

W8
2

W8
3

W8
4

W8
5

W8
6

W8
7

X(0)

X(1)
X(2)
X(3)

X(4)

X(5)
X(6)
X(7)

WN
m

WN
(m+N/2)

Out1= In1 + WN
m In2

Out2 = In1 + WN
(m+N/2) In2

In1

In2

8/17

Real

Imaginary

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7 = WN

3+4 = – WN
3

Rotation by
N/2 causes
Negation

Inherent Structure to Exploit

9/17

WN
m

WN
(m+N/2)

= –WN
m

Output #1

Output #2

Input #1

Input #2

WN
m –1

Output #1

Output #2

Input #1

Input #2

Original Form of “Butterfly”: 2 Complex Multiplies

Improved Form of “Butterfly”: 1 Complex Multiply

Called “Twiddle Factor”
or “Phase Factor”

10/17

4-Point
DFT

x(0)

x(2)
x(4)
x(6)

4-Point
DFT

x(1)

x(3)
x(5)
x(7)

W8
0

W8
1

W8
2

W8
3

–1

X(0)

X(1)
X(2)
X(3)

X(4)

X(5)
X(6)
X(7)

–1

–1

–1

Using Improved Form of “Butterfly”

Now… we can do the same thing to each of these two
4-pt DFTs. Each 4-pt DFT will be decomposed into
two 2-pt DFTs that are fused together via Butterflies.

And because N = 2v we can do this
decomposition a total of v times!

We see here that this approach involves
four 2-pt DFTs (the Butterfly structure)

11/17

FFT for N=8

W8
0

W8
1

W8
2

W8
3

–1

X(0)

X(1)
X(2)
X(3)

X(4)

X(5)
X(6)
X(7)

–1

–1

–1

W8
0

W8
2

W8
0

W8
2

–1

–1

–1

–1

–1

–1

–1

–1

W8
0=1

W8
0=1

W8
0=1

W8
0=1

1st Stage
BF_Step=1
BF_Span=1
Blk_Step=2

xin(0) = x(0)

xin(1) = x(4)
xin(2) = x(2)
xin(3) = x(6)

xin(4) = x(1)

xin(5) = x(5)
xin(6) = x(3)
xin(7) = x(7)

2nd Stage
BF_Step=1
BF_Span=2
Blk_Step=4

3rd Stage
BF_Step=1
BF_Span=4
Blk_Step=8

Note that each stage consists of applying Twiddle Factors & then 2-pt DFTs

12/17

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

1st Stage
Twiddle Factors

2nd Stage
Twiddle Factors

3rd Stage
Twiddle Factors

Dashed
Arrows Show

TFs Not Needed

2π/4

2π/8

Determining
Twiddle Factors

13/17

Indices of Signal Samples
Binary Decimal

000 0
100 4
010 2
110 6
001 1
101 5
011 3
111 7

Indices of Input Array
Decimal Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Dec to Bin Bit Reversal Bin to Dec
Swap

Swap

This particular form of the FFT is called “Decimate-In-Time” because it was
developed by dividing the time samples into groups… The result is that the
order in which you need the input signal samples is not sequential.

For Decimate-In-Time the inputs are in “Bit Reversed Order”:

14/17

FFT Computational Complexity

WN
m –1

Output #1

Output #2

Input #1

Input #2

1 Complex Mult/Butterfly 2 Complex Add/Butterfly

N/2 Butterflies/Stage

log2N Stages/FFT

Complex Mult/FFT = (log2N Stages/FFT)× (N/2 BF/Stage) × (1 Complex Mult/BF)
= N/2 log2N (compared to DFT’s N2)

Complex Adds/FFT = (log2N Stages/FFT)× (N/2 BF/Stage) × (2 Complex Adds/BF)
= N log2N (compared to DFT’s ≈N2)

FFT is “Order N log2N” or O(N log2N)

15/17

–1

–1

–1

–1

W8
0=1

W8
0=1

W8
0=1

W8
0=1

First Stage

1

5

3

7

2

6

4

8

Input
x(n) = [1 2 3 4 5 6 7 8]
n = 0 1 2 3 4 5 6 7

1+5=6

1-5=-4

3+7=10

3-7=-4

2+6=8

2-6=-4

4+8=12

4-8=-4

FFT Example

16/17

W8
0 = 1

W8
2 = -j

W8
0 = 1

W8
2=-j

–1

–1

–1

–1

Second Stage

6

-4

10

-4

8

-4

12

-4

6+10=16

-4+j4

6-10=-4

-4-j4

8+12=20

-4+j4

8-12=-4

-4-j4

17/17

W8
1 = 0.707-j0.707

W8
2 = -j

W8
3 = -0.707-j0.707

–1

–1

–1

–1

Third Stage

16

-4+j4

-4

-4-j4

20

-4+j4

-4

-4-j4

W8
0 = 1

16+20=36

(– 4+j4)+(0.707 – j0.707)(– 4+j4)
= – 4 +j 9.657

– 4+j4

(– 4 – j4)+(– 0.707 – j0.707)(– 4 – j4)
= – 4 + j1.657

16 – 20 = – 4

(– 4+j4) – (0.707 – j0.707)(– 4+j4)
= – 4 – j 1.657

– 4 – j4

(– 4 – j4) – (– 0.707 – j0.707)(– 4 – j4)
= – 4 – j9.657

	EEO 401 �Digital Signal Processing�Prof. Mark Fowler
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

