
Note Set #22
• Using the DFT for Spectral Analysis of Signals
• Reading Assignment: Sect. 7.4 of Proakis & Manolakis

Ch. 6 of Porat’s Book

EEO 401 
Digital Signal Processing

Prof. Mark Fowler
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Goal of Practical Spectral Analysis
Goal: Given a discrete-time signal x[n], use DFT (via FFT) 

to analyze its spectral content – in particular, to detect 
the presence of sinusoids and estimate their frequency.

Challenges: 
1. Available signal may be short (e.g., a radar signal 

may only be “on” for a very short time).
2. If the signal is long, then the spectral content may 

change with time (e.g., music spectrum changes with 
time) – so spectrum may be considered to be 
constant only a block-by-block basis where the 
blocks are short.

Both of these drive the need to apply the DFT to a short 
signal record  Challenge = Resolution & Accuracy
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Example Application (Electronic Warfare) 
Intercept T seconds of a Radar Pulse Train p(t), Compute DFT, detect & 

estimate peaks to identify type of radar. 

“Underlying” Pulse Train is Periodic  Fourier Series
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Since DFT shows samples of the 
DTFT of the finite duration signal 
we can study what the DFT gives us 
by looking at what the DTFT of a 
finite-duration signal looks like!! 
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Effect of Windowing

Porat Sections 6.1 and 6.2
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Basic Viewpoint of Signal Data  
We are given a finite # of signal samples, and want to use them 
to see the spectrum of the infinite-duration signal….
How well can we do that?
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Better Math Model – Rectangular Window-Based Model:
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5/29



Implication of Window-Based Model 
Since the available data x[n] is related to the unavailable signal 
y[n] through multiplication we can use the Multiplication 
Theorem for DTFT (Eq. (2.103) in Porat) to find out what we get!
Thus, the DTFT of the signal data is related to the DTFT of the 
infinite-duration signal by:  
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Use Euler!
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The “Dirichlet Kernel” D(,N)
• Looks like “sinc”, except periodic
• Mainlobe Gets Narrower as N
• Sidelobes “Get Lower” as N
• Height of Mainlobe = N
 Looks more like delta as N
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Impact of Window
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Impact of Window (pt. 2)
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Consider a signal consisting of two complex sinusoids:
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Sidelobe Leakage (“SL Interference”)
Large Sidelobes Obscure Small Sinusoid 

9/29



Impact of Window (pt. 3)
Consider a signal consisting of two complex sinusoids 
closely spaced in frequency and similar in amplitude:
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ADC

x[0]
x[1]
x[2]

x[N-1]

 DFT 
processing
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Inside “Computer”
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NS-21 CTFT-DTFT-DFT Connections – Summary
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Errors in a Computed DFT

CTFT

DTFT

DTFTN

DFT

Aliasing Error – control through Fs choice 
(i.e. through proper sampling)

“Smearing” Error – control through N choice 
“window” choice

This is the  only thing we can compute from data… and it has all 
these “errors” in it!!  The theory covered here allows an engineer 
to understand how to control the amount of those errors!!!

“Grid” Error – control through N choice 
“zero padding”

NS-21 CTFT-DTFT-DFT Connections – Summary
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Let’s imagine we have the following CT Signal: 0)()(   bfortuetx bt

)(tx
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Suppose we sample this signal at Fs = 30 kHz  
Suppose we take 8 samples….  

NS-21 CTFT-DTFT-DFT Connections – Example
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Now put these 8 samples into our computer and compute the DFT without ZP:  
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Inside “Computer”
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Let’s simulate doing this by using MATLAB!!
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2000( ) ( )tx t e u t Fs = 30 kHz  1 / sT F

Fs=30000; T=1/Fs;
n=0:7;
t_n=n*T;
b=2000*pi;
x=exp(-b*t_n);
subplot(2,1,1);  stem(n,x); xlabel('n');ylabel('x[n]')

%%%% Now we have 8 signal samples of this signal
%%%  Now we compute the DFT of it using the fft command
%%%     ....and we use fftshift to put the results between -pi and pi

X_dft=fftshift(fft(x));

%%%  Now plot magnitude of DFT
N = length(X_dft);
delta_f = Fs/N;
f=(-(N/2):((N/2)-1))*delta_f;
subplot(2,1,2); stem(f,abs(X_dft)); xlabel('f (Hz)');ylabel('|DFT|')

We have three choices:
(a)  Against index k values  

(Rarely a good choice)
(b)  Against DT freq Omega (rad/sample) between -pi and pi

(Use if you only care about “DT world”)
(c) Against CT frequency f (Hz) between -Fs/2 and Fs/2

(Use when you care about “link to CT world”)

See Next Slide…
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Creation of Frequency Vector for DFT Plotting
When computing the DFT (using fft) you get N numbers that tell the values the 
DFT coefficients have.  But you need to know what frequencies they are at…

We’ll assume that you are using fftshift, which moves the DFT coefficients 
around so they lie in the frequency range - to 

To plot versus f in Hz:
• For N DFT points… the frequency spacing between them is 
• With fftshift, the frequencies start at –Fs/2
• Thus the command that makes these frequency points is

f = ( (-N/2):( (N/2) -1 ) )*Fs/N

sF N

To plot versus  in rad/sample:
• For N DFT points… the frequency spacing between them is 
• With fftshift, the frequencies start at -
• Thus the command that makes these frequency points is

omega = ( (-N/2):( (N/2) -1 ) )*2*pi/N

2 N

Example for our N=8 case:   omega = (-4:3)*2*pi/8   

gives the vector  [-pi  -3pi/4  -pi/2 –pi/4  0  pi/4  pi/2  3pi/4] 

8 points
Starts at pi
Stops “just shy of pi”
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ADC

x[0]
x[1]
x[2]

x[N-1]

 DFT 
processing



X [0]
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X[2]



Inside “Computer”
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So…  What does this tell us??

How does this relate to the CT 
signal’s CTFT?

How do we answer those 
questions??? 17
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Inside “Computer”



memory array
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)(tx ][nx

)(X
CTFT 
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Zero-
padding to 
length Nzp

We study the 
theory of these

Practical 
computed DFT

…to understand what this shows!
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So… to analyze what we get from the DFT processing for this signal…

…  Start at the CTFT @ ADC input!!!! 18/29



From FT Table we have:
bfj

fX
bj

X
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( ) ( )btx t e u tCTFT of Signal at ADC Input

%%%% Compute the Theoretical CTFT
b=2*pi*1000;
f=-200000:100:200000;
CTFT=1./(j*2*pi*f + b);   %%% from CTFT table
plot(f/1e3,abs(CTFT),'r--');
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)(tx

CTFT

ADC
Inside “Computer”
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 DFT 
processing
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If we sample x(t) at the rate of Fs samples/second – That is, sample every T = 1/Fs 
sec – we get the DT Signal coming out of the ADC is:
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Note: |a| < 1

Now imagine that in theory we have all of the samples x[n]  - < n <  at the ADC 
output. 

Then, in theory the DTFT of this signal is found using the DTFT table to be:
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DTFT Result…(Theory)

For |a| < 1 which we have because: 

0,0&   Tbea bT

Sampled Signal

DTFT of Signal at ADC Output
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%%%%  Compute the Theoretical DTFT_inf
T=1/Fs;   
a=exp(-b*T);   %%% computes exponential decay rate of sampled signal
omega=-3*pi:0.01:3*pi;
DTFT_inf=1./(1 - a*exp(-j*omega));   %%% from DTFT table
plot(omega/pi,abs(T*DTFT_inf));
xlabel('\Omega/\pi  (Normalized rad/sample)')
ylabel('|T*DTFT_{inf}(\Omega)|')
hold on
h=plot(f/(Fs/2),abs(CTFT),'r--');
axis_x([-3 3])
hold off

 
 jae

X
1

1)(

22/29



Our theory says that:
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So we should see “replicas” in X() and we do!

We plot TX() to undo the 1/T here
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)(tx

CTFT

ADC
Inside “Computer”
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DTFT of Signal Stored Inside Computer
Now, in reality we can “collect” only 
N <  samples in our computer:

[ ] , 0 ( 1)
("Assume"  [ ] 0 elsewhere)
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The DTFT of this collected finite-duration signal is easily found “by hand”: 
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…and this has a “smearing” effect: called “leakage error”
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Eq. (7.6) in Kamen & Heck 
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%%%%  Compute the Theoretical DTFT_N
DTFT_N=(1-(a*exp(-j*omega)).^N)./(1 - a*exp(-j*omega));    
plot(omega/pi,abs(T*DTFT_inf));
hold on
plot(omega/pi,abs(T*DTFT_N),'m');
hold off
xlabel('\Omega/\pi  (Normalized rad/sample)')
ylabel('|T*DTFT_{N}(\Omega)|')

For this case the leakage 
error is these ripples

DTFT DTFTN

26/29



)(tx

CTFT

ADC
Inside “Computer”

sensor

][nx

DTFT

Aliasing 
Error

x[0]
x[1]
x[2]

x[N-1]

 DFT 
processing



X [0]
X[1]
X[2]





memory array memory array

X[N-1]

DTFTN

Smearing
/Leakage 
Error

27/29



[0]
[1]

...
[ 1]

x
x

x N 

[ ]Nx n   
21

0

[ ]
knN j

N
N

n

X k x n
 



 
(The only part of 

this example we’d 
really “do”)

Finally… DFT of Signal Stored Inside Computer

Our theory tells us that the zero-padded DFT is nothing more than “points” on 
DTFTN: )(][ kNzp XkX  where 2 0, 1, 2, ..., 1k

k k N
N


   

Spacing between DFT “points”

DTFTN

DFT These are the DFT values 
we initially computed!
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