

State University of New York

EEO 401 Digital Signal Processing Prof. Mark Fowler

<u>Note Set #21</u>

- Using the DFT to Implement FIR Filters
- Reading Assignment: Sect. 7.3 of Proakis & Manolakis

Motivation: DTFT View of Filtering

There are two views of filtering:

* Time Domain * Frequency Domain $x[n] \\ X^{f}(\theta) \xrightarrow{h[n]} H^{f}(\theta) \xrightarrow{y[n] = h[n] * x[n]} Y^{f}(\theta) = H^{f}(\theta) X^{f}(\theta)$

The FD viewpoint is indispensable for <u>analysis and design</u> of filters:

* Passband, Stopband, etc. of $|H^{f}(\theta)|$

* Linearity of Phase $\angle H^{f}(\theta)$, etc.

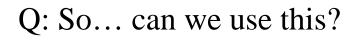
Q: What about using <u>DTFT for implementation</u>?
* Compute DTFT of input signal and filter
* Multiply the two and take inverse DTFT

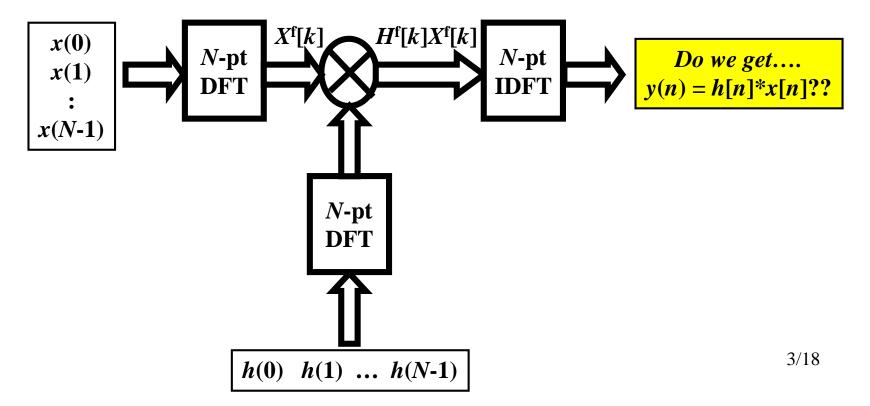
A: <u>NO!!!</u> Can't compute DTFT – must compute at <u>infinite</u> many frequency values

Desired Intention: But Does It Work?

But wait....

- If input signal is finite length, the DFT computes "samples of the DTFT"
- Likewise, if filter impulse response is finite length





DFT Theory and Cyclic Convolution

A: Not Necessarily!!!!

DFT Theory (Sect. 7.2.2 in Proakis & Manolakis) tells us:

 $\mathbf{IDFT}\{H^{\mathrm{f}}[k]X^{\mathrm{f}}[k]\} = h[n] \circledast x[n]$

Circular (Cyclic) Convolution

Thus... this block diagram gives something called cyclic convolution, not the "ordinary" convolution we <u>want</u>!!!

Q: When *does* it work???

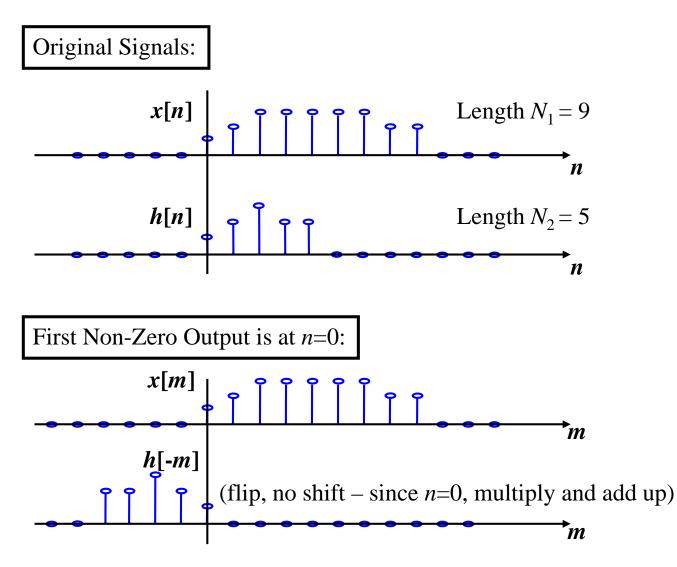
A: Only when we <u>"trick" the DFT Theory</u> into making <u>circular</u> = <u>linear</u> convolution!!!!!!

Q: So... when <u>does</u> Cyclic = Linear Convolution???

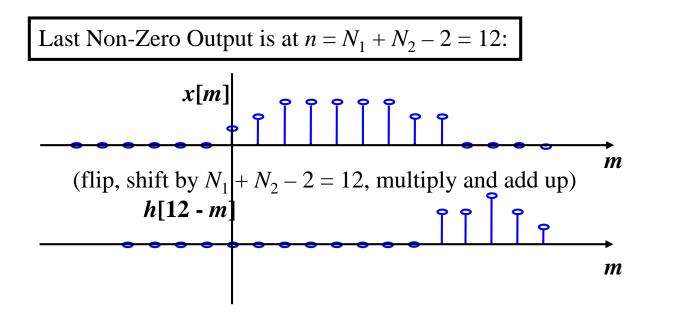
Easiest to see from an example!!!!!

Linear Convolution for the Example

What does *linear* convolution give for 2 finite duration signals:



Linear Convolution for the Example (cont.)

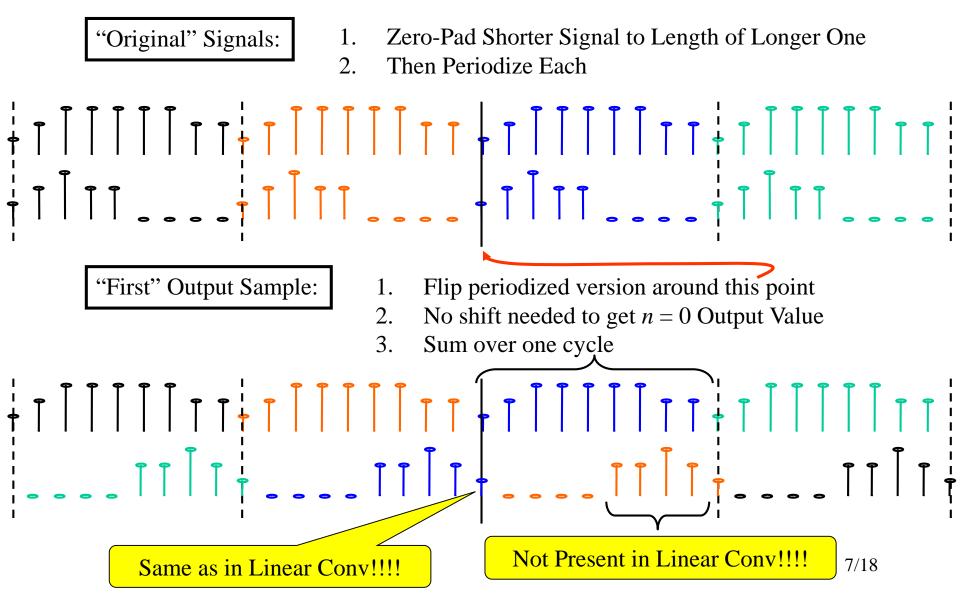


The non-zero outputs are for $n = 0, 1, ..., 12 \rightarrow 13$ of them

In General: Length of Output of Linear Convolution = $N_1 + N_2 - 1$

Cyclic Convolution for the Example

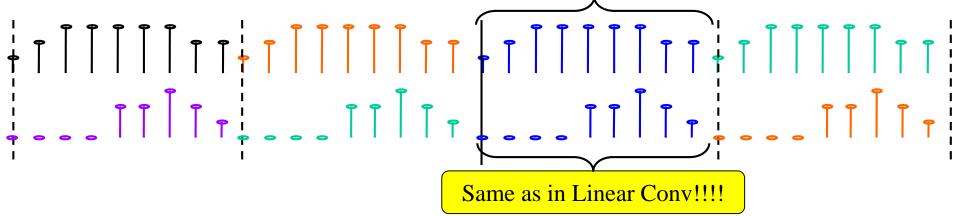
Now... What does *cyclic* convolution give for these 2 signals:



Linear Convolution for the Example (cont.)

"Last" Output Sample (i.e., n = 8):

- 1. Flip periodized version around this point
- 2. Shift by 8 to get n = 8 Output Value
- 3. Sum over one cycle

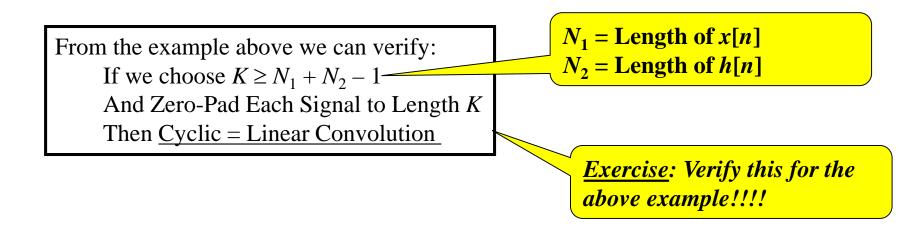


<u>Note</u>: If I try to compute the output for n = 9 → Exactly the same case as for n = 0!!Thus, the output is cyclic (i.e., periodic) with unique values for n = 0, 1, ..., 8In General: Length of Output of Cyclic Convolution = max{ N_1, N_2 }

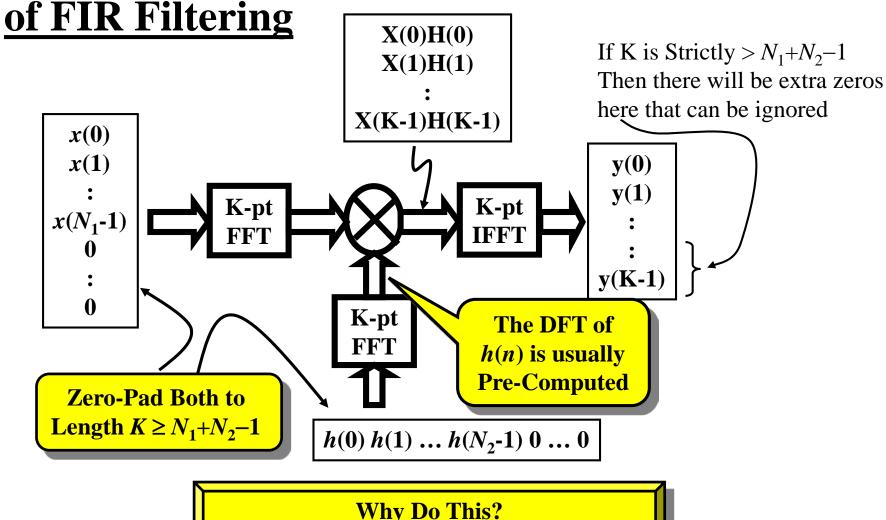
Making Cyclic = Linear Convolution

So.... Some of the output values of cyclic conv are <u>different</u> from linear conv!!! Some of the output values of cyclic conv are <u>same as</u> linear conv And....

The length of cyclic conv differs from the length of linear conv!!!



Simple Frequency-Domain Implementation



The FFT's Efficiency Makes This Faster Than Time-Domain Implementation (In Many Cases)

Problems with the Simple FD Implementation

Q: What if $N_1 >> N_2$?

A: Then, need **<u>Really Big FFT</u>** \rightarrow Not Good!!!

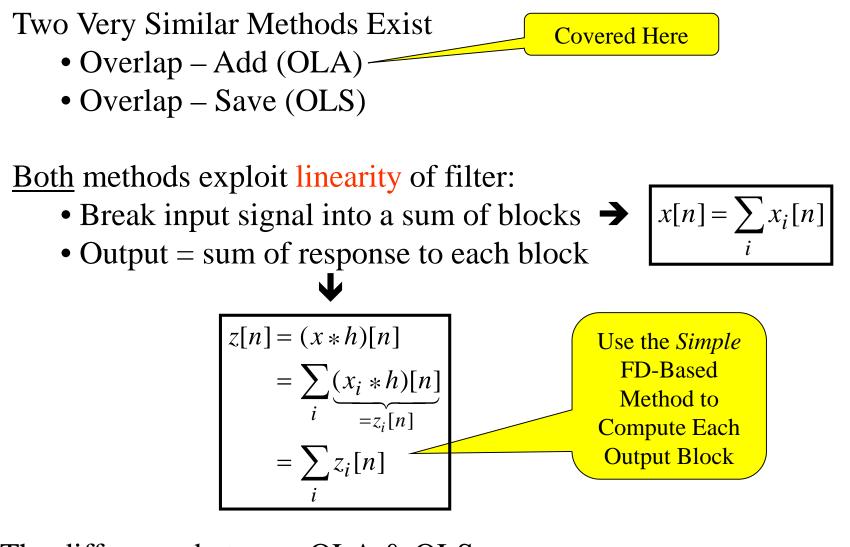
(Input signal much longer than filter length) Also... can't get any output samples until after whole signal is available and FFT processing is done. <u>Long Delay</u>.

Example: Filter 0.2 sec of a radar signal sampled at Fs = 50 MHz $N_1 = (0.2 \text{ sec}) \times (50 \times 10^6 \text{ samples/sec}) = 10^7 \text{ samples}$ FFT Size > 10⁷ \rightarrow Really Big FFT!!!!

Q: What if N₁ is unknown in advance?
Example: Filtering a stream of audio
A: FFT size can't be set ahead of time – difficult programming

Simple FD Implementation Has Serious Limitations!!!

Better FD-Based FIR Filter Implementations



<u>The difference between OLA & OLS</u> lies in how the $x_i[n]$ blocks are formed

12/18

OLA Method for FD-Based FIR

For OLA: Choose $x_i[n]$ to be <u>non</u>-overlapped blocks of length N_B (blocks are contiguous)

$$x_i[n] = \begin{cases} x[n], & iN_B \le n < (i+1)N_B \\ 0, & \text{otherwise} \end{cases}$$

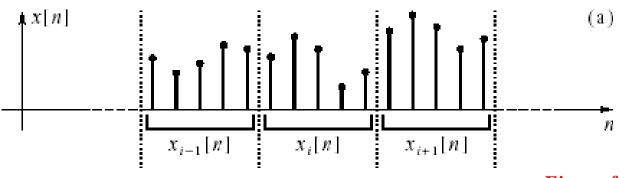


Figure from Porat's Book

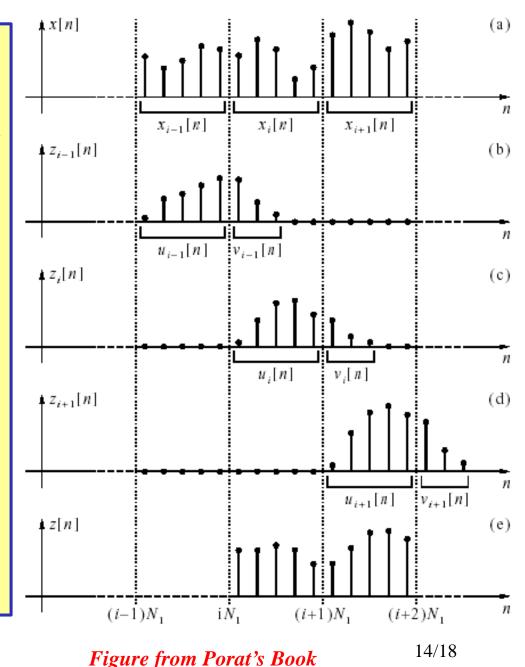
 N_B is a

Design Choice

Q: Now what happens when each of these length- N_B blocks gets convolved with the length- N_2 filter? <u>A</u>: The output block has length $N_2 + N_B - 1 > N_B$

- Output Blocks are Bigger than Input Blocks
- But are separated by N_B points
- Thus... Output Blocks Overlap
- Total Output = "Sum of Overlapped Blocks"

"Overlap-Add"



OLA Method Steps

<u>Assume</u>: Filter h[n] length N_2 is specified <u>Choose</u>: Block Size N_B & FFT Size $N_{FFT} = 2^p \ge N_B + N_2 - 1$ Choose N_B such that: $N_B + N_2 - 1 = 2^p$

It gives minimal complexity for method (see below)

<u>Run</u>:

Zero-Pad h[n] & Compute N_{FFT} -pt FFT (can be pre-computed) For each *i* value ("For Each Block")

- Compute $z_i[n]$ using Simple FD-Based Method
 - ► Zero-Pad $x_i[n]$ & Compute N_{FFT} -pt FFT
 - ▶ Multiply by FFT of *h*[*n*]
 - Compute IFFT to get $z_i[n]$
- Overlap the $z_i[n]$ with previously computed output blocks
- Add it to the output buffer

OLA Method Complexity

- The FFT of filter h[n] can be pre-computed \rightarrow Don't Count it!
- We'll measure complexity using <u># Multiplies/Input Sample</u>
- Use $2N_{\text{FFT}}\log_2 N_{\text{FFT}}$ Real Multiplies as measure for FFT
- Assume input samples are Real Valued Can do 2 real-signal FFT's for price of ≈ 1 Complex FFT (Classic FFT Result!)
- For Each Pair of Input Blocks
 - ► One FFT: $2N_{\text{FFT}}\log_2 N_{\text{FFT}}$ Real Multiplies
 - Multiply DFT × DFT: $4N_{\text{FFT}}$ Real
 - ► One IFFT:
 - ► <u>Total</u>:

- $4N_{\rm FFT}$ Real Multiplies
- $2N_{\rm FFT}\log_2 N_{\rm FFT}$ Real Multiplies
 - $4N_{\text{FFT}}[1 + \log_2 N_{\text{FFT}}]$ Real Multiplies
 - $= 4(N_B + N_2 1) \left[1 + \log_2(N_B + N_2 1)\right]$
- The Number of Input Samples = $2 \text{ Blocks} = 2N_B$
- <u># Multiplies/Input Sample</u> = $2(1 + (N_2 1)/N_B) [1 + \log_2(N_B + N_2 1)]$

Comparison to TD Method Complexity

Complexity of TD Method

- •Filter h[n] has length of N_2
- To get each output sample:
 - Multiply each filter coefficient by a signal sample: N_2 Multiplies
- <u># Multiplies/Input Sample</u> = N_2 Multiplies

Condition Needed For OLA to Be More Efficient:

$$2\left(1 + \frac{N_2 - 1}{N_B}\right) \left[1 + \log_2\left(N_2 + N_B - 1\right)\right] < N_2 \quad (\bigstar)$$

Thus... For a given N_2 , Choose N_B to minimize the left-hand side

FD Complexity vs **TD** Complexity

<u>Plot of</u>: [Left-Hand Side]/[Right-Hand Side] of (★)

