
Note Set #2
• DT Signals and Systems – Review
• Reading Assignment: Sect 2.1 & 2.2 of Proakis & Manolakis

EEO 401
Digital Signal Processing

Prof. Mark Fowler

1/25

Discrete-Time (D-T) Signals
A discrete time signal is a sequence of numbers indexed by integers

Example: x[n] n = …, - 3, -2, -1, 0, 1, 2, 3, …

Brackets indicate discrete-time signal.
Use parentheses to indicate a C-T signal.
(Proakis & Manolakis don’t do this!)

x[n]

n

A stem plot emphasizes that the
signal does not exist

in-between integer n values

Sometimes we violate this
and plot with line segments
connecting the dots.

Remember: for our point of view,
D-T signals are needed to allow us
to process signals (i.e. information)
using D-T systems rather than only

Continuous-Time systems

See the book’s description three
alternative ways to represent a DT signal:
• Functional Representation
• Tabular Representation
• Sequence Representation use ↑ to indicate which sample

is at the time origin (n = 0) 2/25

Infinite Duration & Finite Duration D-T Signals

Most general case: the number of non-zero values in the signal is infinite.
“Infinite Duration” “Goes on forever”

“Doubly Infinite” { }[] ,4,2,0,1,3,7,12,5.3,2.1,x n
↑

=

“Singly Infinite” { }[] 7,12,5.3,2.1,x n
↑

= This means [] 0 0x n n= ∀ <

{ }[] ,4,2,0,1,3,7x n
↑

= This means [] 0 0x n n= ∀ >

Special case: the number of non-zero values in the signal is finite.
“Finite Duration” “Starts and Stops”

{ }[] 7,12,5.3,2.1x n
↑

= This means
0 0

[]
0 3

n
x n

n
∀ <

= ∀ >

This is “a finite-duration sequence of length 4”

3/25

Two Important Properties

Most real-world signals are quite complicated looking… but there are some
simple signals that are good for learning but also do show up sometimes in the
real world!

“Unit Sample Sequence”

≠
=

=
0,0
0,1

][
n
n

nδ

Also called “Unit Impulse”
or “Delta Function”
or “Delta Sequence”

∑
∞

−∞=

=
n

n 1][δ

][][][00 nxnnnx
n

=−∑
∞

−∞=

δ

Some Elementary DT Signals

Sifting Property
4/25

“Unit Step Sequence”

0, 0
[]

1, 0
n

u n
n
<

= ≥

“Unit Ramp Sequence”

0, 0
[]

, 0r

n
u n

n n
<

= ≥

[] []ru n nu n=

[] []ru n or r n

5/25

“Real Exponential Signal”

[] ,nx n a n a= ∀ ∈

Decays if |a| < 1 Explodes if |a| > 1

Monotonic
if a > 0

Oscillates
if a < 0

6/25

“Complex Exponential Signal” Includes Complex Sinusoids (r = 1)

[] ,nx n a n a= ∀ ∈

, 0ja re rθ= >
Re

Im

θ
r

() ()[] cos() sin()
nn j n j n nx n a re r e r n j nθ θ θ θ= = = = +

Radius r controls “decay rate”
• r < 1 (inside UC) decays
• r > 1 (outside UC) “explodes”

Angle θ controls “oscillation rate”
• θ = 0 (on positive Re) no oscillation
• θ ≠ 0 (off positive Re) oscillation

Re{a}

Im{a}

Unit Circle

7/25

Many times what we can or can not do with a signal depends on some
characteristic of that signal. Thus, it is helpful to classify DT signals into
some typical subsets to help keep track of all this…

Classification of DT Signals

Some Categories of DT Signals
• Infinite Duration vs Finite Duration

• We’ve seen that one already!
• Energy Signals vs. Power Signals

• We’ll discuss that next
• Periodic Signals vs. Aperiodic Signals

• You should recall this from Signals & Systems (see our textbook)
• Symmetric (even) Signals vs. Antisymmtric (odd) Signals

8/25

Energy Signals vs. Power Signals
Physically, defining power and energy for DT signals is not that well
defined… after all these are just a stream of numbers in a computer!

However, we can still do this from a mathematical sense that mimics the
definitions used for physical CT signals.

Energy of DT Signal: 2[]
n

E x n
∞

=−∞

= ∑

Obviously, E > 0 for any non-zero signal!

But, since we are adding (possibly) infinitely many positive values it is
possible that for some signals the value of E is infinite.

This leads to our first classification:
A signal is said to be an Energy Signal if its energy is finite (i.e., 0 < E < ∞)

Clearly for this to happen we need |x[n]| to decay “fast enough” as n → ±∞

Examples of Energy Signals
1. Any finite-duration signal
2. Decaying exponential: , with 1na a <

Examples of Non-Energy Signals
1. Sinusoid
2. Unit Step

9/25

For those signals that are NOT energy signals we can characterize their Power

Energy of DT Signal over finite interval of “length” 2N+1:
2[]

N

N
n N

E x n
=−

= ∑

Drawing from the physical idea that power is the rate of doing work (i.e., the
amount of energy consumed/delivered per unit time) we can define similar
ideas for DT signals.

Then… Power of a DT Signal is:
21lim lim []

2 1 2 1

N
N

N N n N

EP x n
N N→∞ →∞

=−

= =
+ + ∑

Energy per 2N+1 samples

Note that what you get for P depends on a “race” between EN and 2N+1:
• If EN grows but eventually “levels out” (then x[n] is an energy signal)

we get that P = 0. So only energy signals have P = 0.
• If EN grows and never levels out, but does not grow faster than 2N+1

then P is finite and nonzero. Not an energy signal, called power signal.
• If EN grows and never levels out, but does grow faster than 2N+1 then P

is infinite. Neither energy nor power signal. 10/25

Energy Signal EN → E < ∞ P = 0
Power Signal EN → ∞

but not faster than 2N+1
0 < P < ∞

Neither EN → ∞
but faster than 2N+1

P → ∞

lim NN
E E

→∞
=2[]

N

N
n N

E x n
=−

= ∑ lim
2 1

N
N

EP
N→∞

=
+

Classification of Signals on Energy & Power

11/25

Symmetric (Even) vs. Anti-Symmetric (Odd)
A DT signal is symmetric (even symmetric) if [] []x n x n− =

Illustrated here
using CT because it
is easier to draw!

t

x(t)

to-to

Same value for all to

A DT signal is anti-symmetric (odd symmetric) if [] []x n x n− = −

t

x(t)

to-to

Negative values for all to

Note what happens at
n = 0…

[0] [0]
[0] [0]

x x
x x

− = −
⇒ = −

That can only be true
if x[0] = 0!!! 12/25

Why do we care about symmetry??? Because in Fourier analysis of signals
we are decomposing a signal into sines (odd) and cosines (even) and it turns
out that if the signal is even (odd) then we can build it using only cosines
(sines).

So if there is some form of symmetry we can exploit it to make our analysis
job easier!!

Even we have a general signal we can sometimes make use of the
simplifications that come from symmetry:

Any signal x[n] can be broken into a sum of an even part % odd part like this

[] [] []e ox n x n x n= +

[]1[] [] []
2ex n x n x n= + − []1[] [] []

2ox n x n x n= − −

Clearly, these two add to x[n]… and it is easy to verify they are even and odd.
13/25

Simple Manipulation of DT Signals
Time Shift
A given signal x[n] is shifted in time by
replacing n by n – k, where k is an integer.

• If k is negative then the shift is to the
left… which is an “advance”

• If k is positive then the shift is to the
right… which is a “delay”

Don’t forget there is a
negative already in there!!

14/25

Time Reversal

A given signal x[n] is reversed in time by
replacing n by –n.

• Flipping and shifting can be
combined… Careful here: Do the
shift first then the flip.

• Time reversal just “anchors” the
signal at n = 0 and flips it

Shift left by 2 Flip the shifted signal

[] [2] [2]x n x n x n→ + → − +

15/25

Time Scaling

A given signal x[n] is scaled in time by
replacing n by µn, where µ must be an integer.

Notey[n]

0 1 2-1-2 n

m

x[m]

0 1 2 3 4 5 6 7 8-5 -4 -3 -2 -1-6

[] []y n x nµ=
An easy way to help visualize this is to let m = µn, let n run through the
integers and find the resulting values of m… those are the indices of the
samples you’ll have “keep”

n: 0 1 2 3 …
m: 0 1 2 3 4 5 6 7 8 9 …

µ = 3

You can see why this process is
also called “Down Sampling”!

16/25

y[n]

0 1 2-1-2 n

n

x[n]

0 1 2 3 4 5 6 7 8-5 -4 -3 -2 -1-6

Then…. We re-imagine the new signal on the same axis as the original:

Addition, Multiplication & Amplitude Scaling

Adding two sequences, multiplying two sequences, or multiplying a sequence
by a number are defined in the obvious way.

17/25

Input-Output Description of Systems
Systems, by their very nature, simply map each given input sequence into
a corresponding output sequence.

Thus… the simplest viewpoint of describing (or modeling) systems is to
provide a mathematical description of how the system creates the output
from the input.

Some Examples:

[] [1]y n x n= −“Unit Delay System”

[]1[] [] [1] [2]
3

y n x n x n x n= + − + −“Moving Average Filter”

[] []
n

k
y n x k

=−∞

= ∑“Accumulator”

Note that we can re-write the Accumulator as [] [1] []y n y n x n= − +

which describes the system using a recursive equation (an example of the
general class of difference equations).

18/25

Difference Equations

][...]1[][][...]1[][101 MnxbnxbnxbNnyanyany MN −++−+=−++−+

A general Nth order Difference Equations looks like this:

Most “Advanced”
Output Sample

Least “Advanced”
Output Sample

The difference between these two index
values is the “order” of the difference eq.
Here we have: n – (n – N) = N

∑∑
==

−=−+
M

i
i

N

i
i inxbinyany

01

][][][Can Write As:

∑∑
==

−+−−=
M

i
i

N

i
i inxbinyany

01
][][][

Now… isolating the y[n] term gives the “Recursive Form”:

Some “past”
output values,
with values
already known

current & past
input values
already “received”

“current” output
value to be
computed

Given the input values and
N “initial” output values we

can solve this recursively.

19/25

Block Diagrams for DT Systems
We use a few simple blocks to allow us to “build” representations of DT
systems:

• Adder – adds two signals
• Constant Multiplier – multiplies signal by a constant
• Signals Multiplier – multiplies one signal by the other
• Unit Delay – Outputs a one-sample delayed version of its input
• Unit Advance – Outputs a one-sample advanced version of its input

Example: System described by Difference Equation
[] 0.25 [1] 0.5 [] 0.5 [1]y n y n x n x n= − + + −

x[n–1]

y[n–1]
Can move multipliers
to a single one here 20/25

Classification of DT Systems

Static (memoryless) vs. Dynamic (has memory)

Static system’s output at any time n depends at most on the input sample at
that instant… but no input samples from past or future.

Caution… If it depends on past
output samples then it also

depends on past input samples!

Otherwise it is a Dynamic system. Because its
output depends on past input sample values
the system in essence must have some sort of
“memory” to store these past value.
If you never need more than N < ∞ past input values... then it is Finite Memory.
If you need past inputs infinitely far into the past… then it is Infinite Memory.

[] []y n ax n=

3[] [] []y n nx n bx n= +

[] [] 3 [1]y n x n x n= + −

0

[] []
n

k
y n x n k

=

= −∑

0

[] []
k

y n x n k
∞

=

= −∑

Static Dynamic Finite,
Fixed

Memory

Finite,
Growing
Memory

Infinite
Memory 21/25

Time-Invariant vs. Time-Variant Systems
A Time-Invariant system is one for which the structure of its Input-Output
relationship does not change with time.

That means that if you put a signal in later, the output will be the same shape
just will come out later.

system
x(t) y(t)

x(t)
t

y(t)
t

y(t-t0)x(t-t0)

t0

t
x(t-t0)

t0

t
y(t-t0)

Shown here for CT…
DT is similar!

22/25

A system is linear if superposition holds:

Linear System
x1(t) y1(t)

Linear System
x2(t) y2(t)

Linear System
x(t) = a1 x1(t)+ a2 x2(t) y(t) = a1 y1(t)+ a2 y2(t)

Non-Linear
x1(t) y1(t)

Non-Linear
x2(t) y2(t)

Non-Linear
x(t) = a1 x1(t)+ a2 x2(t) y(t) ≠ a1 y1(t)+ a2 y2(t)

Linear vs. Non-Linear Systems A system that is Linear
& Time-Invariant is
called an LTI System

23/25

A causal (or non-anticipatory) system’s output at a time t1 does not depend on values
of the input x(t) for t > t1

The “future input” cannot impact the “now output”

⇒A Causal system (with zero initial conditions) cannot have a non-
zero output until a non-zero input is applied.

t

t

Input

Output

Causal System

t

t

Input

Output

Non-Causal System

Causal vs. Non-Causal

“Real-time” systems must be causal…. But time-signals recorded processed
off-line can in essence be non-causal. Images can be processed “non-causally”.

24/25

A system is said to be bounded input – bounded output stable if and only if every
bounded input produces a bounded output.

A bounded signal means that there exists some finite number Mx such that the signal’s
absolute value never exceeds it.

Stable vs. Unstable

[] xx n M n≤ < ∞ ∀

Example of an Unstable System
[] []

n

k
y n x k

=−∞

= ∑The “accumulator” is an unstable system

Note: to prove that it is unstable we need only find one bounded input that
gives an unbounded output. If the input is the unit step u[n], which is a
bounded input, then the output equals

0

[] 1 (1)
n

k
y n n

=

= = +∑

which grows without bound so the output is unbounded.
25/25

	EEO 401 �Digital Signal Processing�Prof. Mark Fowler
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	A system is linear if superposition holds:
	Slide Number 24
	Slide Number 25

