
Note Set #18
• Introduction to DFT (via the DTFT)
• Reading Assignment: Sect. 7.1 of Proakis & Manolakis

EEO 401
Digital Signal Processing

Prof. Mark Fowler

1/24

2/24

Discrete Fourier Transform (DFT)

(DTFT)][)(Namely 





n

njenxX can be computed analytically

(at least in principle) when we have an equation model for x[n]

-The first one (“infinite # of terms”)… isn’t a problem if x[n] has “finite duration”

-The second one (“infinitely many points”)… is always a problem!!

We’ve seen that the DTFT is a good analytical tool for D-T signals (and systems –
as we’ll see later)

Q: Well… why can’t we use a computer to compute the DTFT from Data?

A: There are two reasons why we can’t!!

1. The DTFT requires an infinite number of terms to be summed over n =
…, -3, -2, -1, 0, 1, 2, 3, …

2. The DTFT must be evaluated at an infinite number of points over the
interval (–, ]

Well… maybe we can just compute the DTFT at a finite set of points!!

3/24

Let’s explore this possibility… it will lead us to the Discrete Fourier Transform

Suppose we have a finite duration signal: x[n] = 0 for n < 0 and n  N

Then the DTFT of this finite duration signal is:











 
1

0
][][)(

N

n

nj

n

nj enxenxX we can leave out
terms that are zero



)(X

 2/2 3-/2--2-3

If we could compute this at every  value… it might look like this:

We are only interested in this range…
Everywhere else it just repeats periodically

4/24

Now suppose we take the numerical data x[n] for n = 0, …, N-1

and just compute this DTFT at a finite number of  values (8 points here…
but in practice we’d do it MANY more points… thousands of points!)



)(X

 2/2 3-/2--2-3

We leave this point out
because it is always the
same value as at  = –!!

Region of Interest

5/24

Now, even though we are interested in the - to  range,

we now play a trick to make the later equations easier…



)(X

 2/2 3-/2--2-3

We don’t compute points at
negative  values…

But, instead compute their
“mirror images” at  values
between  and 2

Don’t need…
same as  = 0

So say we want to compute the DTFT at M points, then choose

1...,,2,1,0,2
 Mkfor

M
kk



Spacing between computed  values

M
M

MM M
 2)1(,...,22,2,0 1210  

In otherwords:

6/24











 
1

0

1

0

1,,2,1,0,][][)(
2N

n

jnk
N

n

jn
k MkforenxenxX Mk 



Thus… mathematically what we have computed for our finite-duration signal is:

There is just one last step to get the “official” definition of

the Discrete Fourier Transform (DFT):

We must set M = N…

In other words: Compute as many “frequency points” as “signal points”

So… Given N signal data points x[n] for n = 0, …, N-1
Compute N DFT points using:






 
1

0

/2 1...,,2,1,0][][
N

n

Nknj NkenxkX  Definition
of the DFT

Done for a few mathematical reasons… later we’ll learn
a trick called “zero-padding” to get around this!

2
k k

N


 

7/24

Plotting the DFT (we’ll say more about this later..)

)(X

1 k0

We often plot the DFT vs. the DFT index k (integers)

2 3 4 5 6 7 8

N = 8 case



 2/2 3-/2-

But… we know
that these points
can be tied back
to the true D-T
frequency :

48
22 


N

Spacing between computed  values

Don’t need…
same as k = 0

][kX

8/24

Inverse DFT

Recall that the DTFT can be inverted… given X() you can find the signal x[n]

Because we arrived at the DFT via the DTFT… it should be no surprise that the
DFT inherits an inverse property from the DTFT.

Actually, we needed to force M = N to enable
the DFT inverse property to hold!!

So… Given N DFT points X[k] for k = 0, …, N-1
Compute N signal data points using:







1

0

/2 1...,,2,1,0][1][
N

n

Nknj NnekX
N

nx  Inverse DFT
(IDFT)






 
1

0

/2 1...,,2,1,0][][
N

n

Nknj NkenxkX  DFT

Compare to the DFT… a remarkably similar structure:

9/24

• Given N signal data points… we can compute the DFT
– And we can do this efficiently using the FFT algorithm

• Given N DFT points… we can get back the N signal data points
– And we can do this efficiently using the IFFT algorithm

• We know that we can move the “upper” DFT points down to
represent the “negative” frequencies…
– this will be essential in practical uses of the DFT
– Remember… we ended up with the “upper” DFT points only to make the

indexing by k easy!!!
• It is just to make the DFT equation easy to write!!

DFT Summary… What We Know So Far!

Now…

• We need to explore the connections between the DFT and the DTFT

• Then… understand the relation between the CTFT, DTFT, & DFT

10/24

We can use the DFT to implement numerical FT processing
This enables us to numerically analyze a signal to find out what frequencies it
contains!!!

A CT signal
from a “sensor”
& electronics

ADC creates
samples

ADC


DFT

Processing
(via FFT)

X[0]
X[1]
X[2]

X[N-1]


“Computer”



memory
array

)(tx][nx

“H/W” or
“S/W on processor”

x[0]
x[1]
x[2]

x[N-1]


memory
array

FFT algorithm
computes N
DFT values

DFT values
“dumped”

into memory

N samples
“streamed”

into memory

@ Fs

So… we need to understand
what the DFT values tell us
about the CTFT of x(t)…

We need to understand the
relations between…

CTFT, DTFT, and DFT

11/24

We’ll mathematically explore the link between DTFT & DFT in two cases:

…0 0 x[0] x[1] x[2] ... X[N – 1] 0 0

N “non-zero” terms

(of course, we could have some
of the interior values = 0)

1. For x[n] of finite duration:

For this case… we’ll assume that the signal is zero outside the range
that we have captured.

So… we have all of the meaningful signal data.

This case hardly ever
happens… but it’s easy to

analyze and provides a
perspective for the 2nd case

2. For x[n] of infinite duration …or at least of duration longer than what
we can get into our “DFT Processor” inside our “computer”.

So… we don’t have all the meaningful signal data.

What effect does that have? How much data do we need for a given goal?

This is the practical case.

12/24

DFT & DTFT: Finite Duration Case
If x[n] = 0 for n < 0 and n  N then the DTFT is:











 
1

0
][][)(

N

n

nj

n

nj enxenxX we can leave out
terms that are zero

Now… if we take these N samples and compute the DFT (using the FFT, perhaps)
we get:






 
1

0

/2 1...,,2,1,0][][
N

n

Nknj NkenxkX 

Comparing these we see that for the finite-duration signal case:  NkXkX 2][

)(X

1
k


 2/2-/2-

0 2 3 4 5 6 7

][kX
DTFT & DFT :

DFT points lie exactly
on the finite-duration

signal’s DTFT!!!

13/24

Summary of DFT & DTFT for a finite duration x[n]

][nx
)(X









N
kXkX 2][

Points of DFT are “samples”
of DTFT of x[n]

“Zero-Padding Trick”

After we collect our N samples, we tack on some additional zeros at the end to
trick the “DFT Processing” into thinking there are really more samples.

(Since these are zeros tacked on they don’t change the values in the DFT sums)

If we now have a total of NZ “samples” (including the tacked on zeros), then the
spacing between DFT points is 2/NZ which is smaller than 2/N

The number of samples N sets how closely spaced these “samples” are on the
DTFT… seems to be a limitation.

14/24

Ex. DTFT & DFT of pulse



 


otherwise

qn
nx

,0
2...,2,1,0,1

][




 


otherwise

qqn
npq

,0

,,1,0,1,,,1
][:Recall



][][qnpnx q Then…
Note: we’ll need the
delay property for

DTFT

]2/sin[
])5.0sin[()(][





qPnp qqFrom DTFT Table:

Since x[n] is a finite-duration signal then the DFT of the
N = 2q+1 non-zero samples is just samples of the DTFT: 








N
kXkX 2][






 jqeqX
]2/sin[

])5.0sin[()(
From DTFT Property Table

(Delay Property):

Nkjqe
Nk

NkqkX /2

]/sin[
]/2)5.sin[(][


 



15/24

Note that if we don’t zero pad, then all but the k = 0 DFT values are zero!!!

That doesn’t show what the DTFT looks like! So we need to use zero-padding.

Here are two numerically computed examples, both for the case of q = 5:

For the case of zero-
padding 11 zeros onto
the end of the signal…

the DFT points still
don’t really show what
the DTFT looks like!

For the case of zero-
padding 77 zeros onto
the end of the signal…
NOW the DFT points
really show what the

DTFT looks like!

DFTs were computed using matlab’s fft command… see code on next slide

16/24

Compute the DTFT
Equation derived for the
pulse. Using eps adds a
very small number to
avoid getting  = 0 and
then dividing by 0

omega=eps+(-1:0.0001:1)*pi;
q=5; % used to set pulse length to 11 points
X=sin((q+0.5)*omega)./sin(omega/2);
subplot(2,1,1)
plot(omega/pi,abs(X)); % plot magn of DTFT
xlabel('\Omega/\pi (Normalized rad/sample)')
ylabel('|X(\Omega)| and |X[k]|')
hold on
x=zeros(1,22); % Initially fill x with 22 zeros
x(1:(2*q+1))=1; % Then fill first 11 pts with ones
Xk=fftshift(fft(x)); % fft computes the DFT and fftshift re-orders points

% to between -pi and pi
omega_k=(-11:10)*2*pi/24; % compute DFT frequencies, except make them

% between -pi and pi
stem(omega_k/pi,abs(Xk)); % plot DFT vs. normalized frequencies
hold off
subplot(2,1,2)
plot(omega/pi,abs(X));
xlabel('\Omega/\pi (Normalized rad/sample)')
ylabel('|X(\Omega)| and |X[k]|')
hold on
x=zeros(1,88);
x(1:(2*q+1))=1;
Xk=fftshift(fft(x));
omega_k=(-44:43)*2*pi/88;
stem(omega_k/pi,abs(Xk));
hold off

Make the zero-padded signal
Compute the DFT

Compute the DFT point’s
frequency values and plot
the DFT

17/24

• DFT points lie on the DTFT curve… perfect view of the DTFT
– But… only if the DFT points are spaced closely enough

• Zero-Padding doesn’t change the shape of the DFT…
• It just gives a denser set of DFT points… all of which lie on the

true DTFT
– Zero-padding provides a better view of this “perfect” view of the DTFT

Important Points for Finite-Duration Signal Case

18/24

DFT & DTFT: Infinite Duration Case
As we said… in a computer we cannot deal with an infinite number of signal samples.

We can compute the DFT of the N collected samples:

1...,,1,0][][
1

0

/2  




 NkenxkX
N

n

Nnkj
NN



Q: How does this DFT of the “truncated signal” relate to the “true”
DTFT of the full-duration x[n]? …which is what we really want to see!!



 


elsewhere

Nnnx
nxN ,0

1,...,2,1,0],[
][

We can define an “imagined” finite-duration signal:

So say there is some signal that “goes on forever” (or at least continues on for longer
than we can or are willing to grab samples)

x[n] n = …, -3, -2, -1, 0, 1, 2, 3, …

We only grab N samples: x[n], n = 0, …, N – 1 We’ve lost some information!

19/24

DFT of collected data does not perfectly show DTFT of complete signal.

Instead, the DFT of the data shows the DTFT of the truncated signal…

So our goal is to understand what kinds of “errors” are in the “truncated” DTFT
…then we’ll know what “errors” are in the computed DFT of the data

What we want to see

A distorted version of
what we want to see

What we can see

)(of samples gives DFT NX

So… DFT of collected data gives “samples” of DTFT of truncated signal

 “True” DTFT







 

n

njenxX][)(:DTFT True""




















1

0
][

][)(:signal truncatedof DTFT

N

n

nj

n

nj
NN

enx

enxX







1

0

/2][][:data signal collected of DFT
N

n

Nknj
N enxkX 

20/24

To see what the DFT does show we need to understand how

XN() relates to X()

From “mult. in time domain” property in DTFT Property Table:

1() () ()
2N qX X P d




  

 
    causes “smearing”

of X()

 So… XN() …which we can see via the DFT XN[k] …

is a “smeared” version of X()

 
 

2/)1(

2/sin
2/sin)(




 Nj
q eNP

DTFT

with N=2q+1

“Fact”: The more data you collect, the less smearing
… because Pq() becomes more like ()

 qnpnxnx qN ][][

First, we note that:

21/24

)(X

 22 

Suppose the infinite-duration signal’s DTFT is:
DTFT of infinite-
duration signal

)(NX

 22 

Then it gets smeared into something that might look like this:

DTFT of truncated
signal

The DFT points are shown after “upper” points are moved (e.g., by MATLAB “fftshift”)

 22 

][kX N

Then the DFT computed from the N data points is:

22/24

Important points for Infinite-Duration Signal Case
1. DTFT of finite collected data is a “smeared” version of the DTFT of the

infinite-duration data

2. The computed DFT points lie on the “smeared” DTFT curve… not the “true”
DTFT
a. This gives an imperfect view of the true DTFT!

3. “Zero-padding” gives denser set of DFT points… a better view of this
imperfect view of the desired DTFT!!!

The only case that really
happens in practice!

23/24

Connections between the CTFT, DTFT, & DFT
ADC

x[0]
x[1]
x[2]

x[N-1]

 DFT
processing



XN[0]
XN[1]
XN [2]

XN [N-1]


Inside “Computer”



)(tx
][nx

CTFTfX)(

2/Fs2/Fs
f

DTFTFullX)(



Look here to see aliased
view of CTFT

Aliasing



DTFTTruncatedX N)(




“Smearing” DFTComputedkX N][




24/24

Errors in a Computed DFT

CTFT

DTFT

DTFTN

DFT

Aliasing Error – control through Fs choice
(i.e. through proper sampling)

“Smearing” Error – control through N choice
“window” choice

See DSP course

Zero padding trick

Collect N samples  defines XN()

Tack M zeros on at the end of the samples

Take (N + M)pt. DFT  gives points on XN() spaced by 2/(N+M)
(rather than 2/N)

This is the only thing we can compute from data… and it has all
these “errors” in it!! The theory covered here allows an engineer
to understand how to control the amount of those errors!!!

“Grid” Error – control through N choice
“zero padding”

