EEO 401
Digital Signal Processing
Prof. Mark Fowler

Note Set #18

• Introduction to DFT (via the DTFT)
• Reading Assignment: Sect. 7.1 of Proakis & Manolakis
Discrete Fourier Transform (DFT)

We’ve seen that the DTFT is a good analytical tool for D-T signals (and systems – as we’ll see later)

Namely \(X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \) (DTFT) can be computed analytically

(at least in principle) when we have an equation model for \(x[n] \)

Q: Well… why can’t we use a computer to compute the DTFT from Data?

A: There are two reasons why we can’t!!

1. The DTFT requires an infinite number of terms to be summed over \(n = \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \)

2. The DTFT must be evaluated at an infinite number of points over the interval \(\Omega \in (-\pi, \pi] \)

- The first one (‘‘infinite # of terms’’)… isn’t a problem if \(x[n] \) has ‘‘finite duration’’

- The second one (‘‘infinitely many points’’)… is always a problem!!

Well… maybe we can just compute the DTFT at a finite set of points!!
Let’s explore this possibility… it will lead us to the **Discrete Fourier Transform**

Suppose we have a finite duration signal: \(x[n] = 0 \) for \(n < 0 \) and \(n \geq N \)

Then the DTFT of this finite duration signal is:

\[
X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\Omega n}
\]

we can leave out terms that are zero

If we could compute this at every \(\Omega \) value… it might look like this:

We are only interested in this range… Everywhere else it just repeats periodically
Now suppose we take the numerical data \(x[n] \) for \(n = 0, \ldots, N-1 \) and just compute this DTFT at a finite number of \(\Omega \) values (8 points here… but in practice we’d do it MANY more points… thousands of points!)

We leave this point out because it is always the same value as at \(\Omega = -\pi!! \)

Region of Interest
Now, even though we are interested in the $-\pi$ to π range, we now play a trick to make the later equations easier…

We don’t compute points at negative Ω values…

But, instead compute their “mirror images” at Ω values between π and 2π

Don’t need… same as $\Omega = 0$

So say we want to compute the DTFT at M points, then choose

$$\Omega_k = k \frac{2\pi}{M}, \text{ for } k = 0, 1, 2, \ldots, M - 1$$

In otherwords:

$$\Omega_0 = 0,$$ $$\Omega_1 = \frac{2\pi}{M},$$ $$\Omega_2 = 2 \frac{2\pi}{M},$$ $$\ldots,$$ $$\Omega_{M-1} = (M - 1) \frac{2\pi}{M}$$

Spacing between computed Ω values
Thus… mathematically what we have computed for our finite-duration signal is:

\[
X(\Omega_k) = \sum_{n=0}^{N-1} x[n] e^{-jn\Omega_k} = \sum_{n=0}^{N-1} x[n] e^{-jnk\frac{2\pi}{M}}, \quad \text{for} \quad k = 0, 1, 2, \ldots, M - 1
\]

There is just one last step to get the “official” definition of the **Discrete Fourier Transform (DFT):**

We must set \(M = N \)…

In other words: Compute as many “frequency points” as “signal points”

So… Given \(N \) signal data points \(x[n] \) for \(n = 0, \ldots, N-1 \)

Compute \(N \) DFT points using:

\[
X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn / N} \quad k = 0,1,2,\ldots,N-1
\]

Definition of the DFT

\(\Omega_k = k \frac{2\pi}{N} \)
Plotting the DFT (we’ll say more about this later..)

We often plot the DFT vs. the DFT index \(k \) (integers)

But… we know that these points can be tied back to the true D-T frequency \(\Omega \):

Spacing between computed \(\Omega \) values

\[
\frac{2\pi}{N} \Rightarrow \frac{2\pi}{8} = \frac{\pi}{4}
\]
Inverse DFT

Recall that the DTFT can be inverted... given \(X(\Omega) \) you can find the signal \(x[n] \)

Because we arrived at the DFT via the DTFT... it should be no surprise that the DFT inherits an inverse property from the DTFT.

Actually, we needed to force \(M = N \) to enable the DFT inverse property to hold!!

So... Given \(N \) DFT points \(X[k] \) for \(k = 0, ..., N-1 \)
Compute \(N \) signal data points using:

\[
x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N} \quad n = 0, 1, 2, ..., N - 1
\]

Inverse DFT (IDFT)

Compare to the DFT... a remarkably similar structure:

\[
X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} \quad k = 0, 1, 2, ..., N - 1
\]

DFT
DFT Summary… What We Know So Far!

- Given N signal data points… we can compute the DFT
 - And we can do this efficiently using the FFT algorithm
- Given N DFT points… we can get back the N signal data points
 - And we can do this efficiently using the IFFT algorithm
- We know that we can move the “upper” DFT points down to represent the “negative” frequencies…
 - this will be essential in practical uses of the DFT
 - Remember… we ended up with the “upper” DFT points only to make the indexing by k easy!!!
 - It is just to make the DFT equation easy to write!!

Now…

- We need to explore the connections between the DFT and the DTFT
- Then… understand the relation between the CTFT, DTFT, & DFT
We can use the DFT to implement numerical FT processing

This enables us to *numerically* analyze a signal to find out what frequencies it contains!!!

A CT signal from a “sensor” & electronics

ADC creates samples

N samples “streamed” into memory

FFT algorithm computes N DFT values

DFT values “dumped” into memory

So… we need to understand what the DFT values tell us about the CTFT of $x(t)$…

We need to understand the relations between…

CTFT, DTFT, and DFT
We’ll mathematically explore the link between DTFT & DFT in **two cases**:

1. For $x[n]$ of **finite duration**:

 \[... 0 \ 0 \ x[0] \ x[1] \ x[2] \ ... \ X[N-1] \ 0 \ 0 \]

 - N “non-zero” terms
 - (of course, we could have some of the interior values $= 0$)

 For this case… we’ll assume that the signal is zero outside the range that we have captured.

 So… we have **all** of the meaningful signal data.

 ![This case hardly ever happens… but it’s easy to analyze and provides a perspective for the 2nd case](image)

2. For $x[n]$ of **infinite duration** …or at least of duration longer than what we can get into our “DFT Processor” inside our “computer”.

 So… we **don’t** have all the meaningful signal data.

 What effect does that have? How much data do we need for a given goal?

 ![This is the practical case.](image)
DFT & DTFT: Finite Duration Case

If \(x[n] = 0 \) for \(n < 0 \) and \(n \geq N \) then the DTFT is:

\[
X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\Omega n}
\]

we can leave out terms that are zero

Now… if we take these \(N \) samples and compute the DFT (using the FFT, perhaps) we get:

\[
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N} \quad k = 0, 1, 2, \ldots, N - 1
\]

Comparing these we see that for the finite-duration signal case:

\[
X[k] = X\left(k \frac{2\pi}{N}\right)
\]

DFT points lie exactly on the finite-duration signal’s DTFT!!!
Summary of DFT & DTFT for a *finite* duration $x[n]$

The number of samples N sets how closely spaced these “samples” are on the DTFT… seems to be a limitation.

“Zero-Padding Trick”

After we collect our N samples, we tack on some additional zeros at the end to trick the “DFT Processing” into thinking there are really more samples.

(Since these are zeros tacked on they don’t change the values in the DFT sums)

If we now have a total of N_Z “samples” (including the tacked on zeros), then the spacing between DFT points is $2\pi/N_Z$ which is smaller than $2\pi/N$.
Ex. DTFT & DFT of pulse

\[x[n] = \begin{cases} 1, & n = 0, 1, 2, \ldots, 2q \\ 0, & \text{otherwise} \end{cases} \]

Recall: \[p_q[n] = \begin{cases} 1, & n = -q, \ldots, -1, 0, 1, \ldots, q \\ 0, & \text{otherwise} \end{cases} \]

Then… \[x[n] = p_q[n-q] \]

From DTFT Table:

\[p_q[n] \leftrightarrow P_q(\Omega) = \frac{\sin((q + 0.5)\Omega)}{\sin(\Omega/2)} \]

From DTFT Property Table (Delay Property):

\[X(\Omega) = e^{-jq\Omega} \frac{\sin((q + 0.5)\Omega)}{\sin(\Omega/2)} \]

Since \(x[n] \) is a finite-duration signal then the DFT of the \(N = 2q+1 \) non-zero samples is just samples of the DTFT:

\[X[k] = X\left(\frac{k \cdot 2\pi}{N}\right) \]

Note: we’ll need the delay property for DTFT.
Note that if we don’t zero pad, then all but the $k = 0$ DFT values are zero!!!

That doesn’t show what the DTFT looks like! So we need to use zero-padding.

Here are two numerically computed examples, both for the case of $q = 5$:

DFTs were computed using matlab’s `fft` command… see code on next slide
omega=eps+(-1:0.0001:1)*pi;
q=5; % used to set pulse length to 11 points
X=sin((q+0.5)*omega)./sin(omega/2);
subplot(2,1,1)
plot(omega/pi,abs(X)); % plot magn of DTFT
xlabel("\Omega/\pi (Normalized rad/sample)")
ylabel("|X(\Omega)| and |X[k]|")
hold on
x=zeros(1,22); % Initially fill x with 22 zeros
x(1:(2*q+1))=1; % Then fill first 11 pts with ones
Xk=fftshift(fft(x)); % fft computes the DFT and
% to between -pi and pi
omega_k=(-11:10)*2*pi/24; % compute DFT frequencies, except make them
% between -pi and pi
stem(omega_k/pi,abs(Xk)); % plot DFT vs. normalized frequencies
hold off
subplot(2,1,2)
plot(omega/pi,abs(X));
xlabel("\Omega/\pi (Normalized rad/sample)")
ylabel("|X(\Omega)| and |X[k]|")
hold on
x=zeros(1,88);
x(1:(2*q+1))=1;
Xk=fftshift(fft(x));
omega_k=(-44:43)*2*pi/88;
stem(omega_k/pi,abs(Xk));
hold off
Important Points for *Finite-Duration Signal Case*

- DFT points lie on the DTFT curve… perfect view of the DTFT
 - But… only if the DFT points are spaced closely enough
- Zero-Padding doesn’t change the shape of the DFT…
- It just gives a denser set of DFT points… all of which lie on the true DTFT
 - Zero-padding provides a better view of this “perfect” view of the DTFT
DFT & DTFT: Infinite Duration Case

As we said… in a computer we cannot deal with an infinite number of signal samples. So say there is some signal that “goes on forever” (or at least continues on for longer than we can or are willing to grab samples)

\[x[n] \quad n = \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \]

We **only grab N samples**: \(x[n], n = 0, \ldots, N - 1 \)

We’ve lost some information!

We can **define** an “imagined” finite-duration signal:

\[
x_N[n] = \begin{cases}
 x[n], & n = 0, 1, 2, \ldots, N - 1 \\
 0, & \text{elsewhere}
\end{cases}
\]

We can compute the DFT of the \(N \) collected samples:

\[
X_N[k] = \sum_{n=0}^{N-1} x_N[n] e^{-j2\pi nk/N} \quad k = 0, 1, \ldots, N - 1
\]

Q: How does this DFT of the “truncated signal” relate to the “true” DTFT of the full-duration \(x[n] \)? …which is what we really want to see!!
"True" DTFT: \(X_{\infty}(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \)

DTFT of truncated signal: \(X_N(\Omega) = \sum_{n=-\infty}^{\infty} x_N[n]e^{-j\Omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\Omega n} \)

DFT of collected signal data: \(X_N[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}} \)

DFT gives samples of \(X_N(\Omega) \)

So... DFT of collected data gives "samples" of DTFT of truncated signal \(\neq \) "True" DTFT

\[\Rightarrow \text{DFT of collected data does not perfectly show DTFT of complete signal.} \]

Instead, the DFT of the data shows the DTFT of the truncated signal...

So our goal is to understand what kinds of "errors" are in the "truncated" DTFT …then we’ll know what "errors" are in the computed DFT of the data.
To see what the DFT does show we need to understand how $X_N(\Omega)$ relates to $X_\infty(\Omega)$

First, we note that:

$$x_N[n] = x[n]p_q[n-q]$$

From “mult. in time domain” property in DTFT Property Table:

$$X_N(\Omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_\infty(\lambda) P_q(\Omega - \lambda) d\lambda$$

causes “smearing” of $X_\infty(\Omega)$

⇒ So… $X_N(\Omega)$ …which we can see via the DFT $X_N[k]$ … is a “smeared” version of $X_\infty(\Omega)$

“Fact”: The more data you collect, the less smearing … because $P_q(\Omega)$ becomes more like $\delta(\Omega)$
Suppose the infinite-duration signal’s DTFT is:

Then it gets smeared into something that might look like this:

Then the DFT computed from the N data points is:

The DFT points are shown after “upper” points are moved (e.g., by MATLAB “fftshift”)
Important points for Infinite-Duration Signal Case

1. DTFT of finite collected data is a “smeared” version of the DTFT of the infinite-duration data

2. The computed DFT points lie on the “smeared” DTFT curve… not the “true” DTFT
 a. This gives an imperfect view of the true DTFT!

3. “Zero-padding” gives denser set of DFT points… a better view of this imperfect view of the desired DTFT!!!
Connections between the CTFT, DTFT, & DFT

Inside “Computer”

ADC

$x(t)$

$x[n]$

$x[0]$ $X_N[0]$

$x[1]$ $X_N[1]$

$x[N-1]$ $X_N[N-1]$

DFT processing

$x(t)$

$X(f)$ CTFT

$X_\infty(\Omega)$ Full DTFT

Aliasing

$X_N(\Omega)$ Truncated DTFT

“Smearing”

Ω

f

$-Fs/2$ $Fs/2$

Ω

$-\pi$ π

Ω

$-\pi$ π

Ω

$2/Fs$

$2/Fs - f$

$\omega\infty$

ω

Look here to see aliased view of CTFT

Look here to see aliased view of CTFT

$X_N[k]$ Computed DFT
Errors in a Computed DFT

- **Aliasing Error** – control through F_s choice (i.e. through proper sampling)

- **“Smearing” Error** – control through \(N \) choice “window” choice

- **“Grid” Error** – control through \(N \) choice “zero padding”

Zero padding trick

Collect \(N \) samples → defines \(X_N(\Omega) \)

Tack \(M \) zeros on at the end of the samples

Take \((N + M)\)pt. DFT → gives points on \(X_N(\Omega) \) spaced by \(2\pi/(N+M) \) (rather than \(2\pi/N \))