
Abstract—This paper derives the Cramer-Rao lower bound 

(CRLB) on estimates of phase in long baseline interferometry 

(LBI) based localization systems. LBI localization is a classical 

method for finding the location of a non-cooperative emitter by 

estimating the phase difference between received signals by two 

sensors spatially separated on a single platform. In this paper, we 

derive the CRLB for phase difference in LBI-based systems by 

modelling the received signal as a deterministic unknown; that is, 

its samples are considered as nuisance parameters to be estimated. 

Consequently, the CRLB computations become much more 

complicated in this case. Finally, we provide the discussion for our 

results. 

 

I. INTRODUCTION 

Passive localization is an important problem that has been 

investigated for many years ‎[1]-‎[14]. There are several efficient 

methods to perform passive localization based on measuring 

one or more position-dependent parameters of the received 

signals such as angle of arrival (AOA), time difference of 

arrival (TDOA), frequency difference of arrival (FDOA) or the 

energy of the received signal. The classic approach used in all 

these methods is to first estimate these position-dependent 

parameters from many received signals (or in some methods, 

pairs of received signals) and then use the collection of 

estimated parameters in a second estimation stage to determine 

an estimate of the emitter’s‎ location‎ using‎ some‎ statistical‎

inference techniques like least-squares or maximum 

likelihood ‎[1].  Thus, to evaluate the accuracy of an emitter 

location method, it is first necessary to evaluate the accuracy of 

the position-dependent parameter(s) estimation that is governed 

by the Cramer-Rao lower bound (CRLB) of the parameter(s). 

Localization based on long baseline interferometry (LBI) is 

a classical method for finding the location of a non-cooperative 

emitter by estimating the phase difference between the received 

signals by two sensors that have been spatially separated on a 

single platform ‎[4]. The LBI method was compared to a 

differential Doppler method in ‎[4], although the inherent first-

stage accuracies of these two methods were not set based on 

any CRLB analysis.  Thus, the result presented here together 

with other CRLB results (e.g., ‎[9]) would allow a fairer 

comparison between the two location methods considered 

in ‎[4]. 

Under the so-called narrowband assumption we can write 

the noise-free analytic model of our received signals at sensor 

1 and sensor 2 as 
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where s(t) is the low-pass equivalent signal (also called the 

complex envelope) of the noise-free signal at the first sensor, α 

is the unknown relative gain, ωc 
is the carrier frequency, ωd 

is 

the unknown Doppler difference and τ is the unknown delay 

between the two sensors. 

In the LBI method the two sensors are quite close to each 

other (e.g two antennas on one aircraft). Thus, they each will 

have approximately the same relative velocity with respect to 

the emitter, therefore the Doppler difference is almost zero. 

Likewise, since the delay difference is so small, the effect of 

the delay on the complex envelope is negligible. Thus, the 

approximated noise-free signal model for the LBI-based 

method is 
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In other words, since the two sensors are spatially close to 

each other in LBI systems, the only effect of delay happens on 

the carrier. We can write the low-pass equivalent of the 

received signals corrupted by noise as 
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where φ‎is the phase difference and w1(t) and w2(t) are complex 

zero-mean white Gaussian noise processes. Thus, we can say 

that in the LBI case, the location of the emitter shows up only 

as a differential phase between two received signals. 

In LBI the antenna spacing is large enough to induce an 

ambiguity in the measured phase difference; however, as has 

been pointed out in ‎[5], the least-squares location algorithm can 

work directly with the 2-ambiguous measurements.  Thus, for 

our purposes here we need only assess the accuracy of phase 

measurement and can ignore the effect of phase wrapping.   

II. CRLB FOR ESTIMATION OF PHASE IN LBI BASED SYSTEM 

To derive the CRLB for estimation of phase in an LBI-

based system, we assume the transmitted signal is an unknown 

deterministic signal, a common assumption when there is no 
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prior information on the signals. Yeredor and Angel ‎[15] 

calculated the CRLB for TDOA/FDOA estimation by 

modelling the signal as deterministic but unknown. We also 

use a similar model to derive the CRLB for phase in an LBI 

based system.  

Assuming that the received signals are sampled at the 

Nyquist rate to yield their discrete-time versions, (2) becomes 
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where w1[n] and w2[n] are complex zero-mean white Gaussian 

noises with variances σ1
2
 and‎ σ2

2
. Now, we can rewrite it in 

vector form as  

 

1 1

2 2 ,je 

 

 

r s w

r s w
   

(3)

 
 

where the vector s is the noise-free signal vector at the first 

sensor, r1 and r2 are the observation vectors, and w1 and w2 are 

uncorrelated complex-valued white Gaussian noise vectors:
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Since s and 
je  s  are deterministic vectors, they set the 

means of the received vectors but have no impact on the 

variance.  Thus, 1 2[ ]T T T
r r r is a Complex Gaussian vector 

with mean μ and covariance C given by 
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We are interested in the CRLB of the parameter φ. However, 

there are other unknown deterministic parameters, namely α 

and the complex signal vector s, that get involved in the 

analysis and must be considered in calculations. We define the 

parameter vector θ with (2N+2) elements containing all real-

valued unknown parameters as 
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where Re{s
T
} and Im{s

T
} are the real part and imaginary parts 

of s
T
. The Fisher information matrix (FIM) for real-valued 

parameters estimated from a complex Gaussian vector is given 

in ‎[16] as 
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Since the covariance matrix does not depend on the 

parameters, the first term in (6) is equal to zero. From (4), we 

can write  μ θ  as a 2 (2 2)N N   matrix structured as, 
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Replacing  μ θ  from (7) into (6), gives the FIM as, 
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where,    
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Now, we can write the matrix FIM as a block matrix with 

the following format:  
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Using the block matrix inversion formula ‎[17] yields the 

CRLB matrix as,  
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Extracting the lower-right sub-matrix from (9) gives the 

CRLB for the parameters α and φ
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where we have used the diagonality of the matrix defined as A. 

Finally, extracting the lower-right element from this matrix 

gives the CRLB on the parameter φ
 
: 
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Noting that 2
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gives the 

final form of the CRLB of interest as, 
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where N is the number of samples and SNR1 and SNR2 are 

signal to noise ratio for the received signals at sensor 1 and 

sensor 2, respectively. 

Note that if either signal has zero SNR (in ratio not dB), 

then the CRLB is infinite, which makes sense because in that 

case we are not able to estimate the phase relative to a signal at 

zero SNR.  Also, note that when one SNR is much larger than 

the other one then we will have 
min1/ (2 )CRLB N SNR    

which means that even if one of the signals has very low noise, 

a high noise in the other signal will always hurt the estimation 

results.  Finally, given that the two antennas are quite close it is 

likely that SNR1 = SNR2 = SNR in which case the result 

becomes 1/ ( )CRLB N SNR   .  

 

III. CONCLUSION 

In this paper, we considered the LBI-based location system 

for passive emitter localization. The localization problem based 

on LBI is a classical method that finds the location of the 

emitter by estimating the phase difference between the signals 

received by two sensors that are spatially separated on a single 

platform assuming that they are reasonably close to each other. 

We obtained the CRLB on estimates of the phase in the LBI 

based system by modelling the received signal as a 

deterministic unknown signal. The results show that the CRLB 

is proportional to the summation of SNR reciprocals and also 

the reciprocal of the number of signal samples (or equivalently 

the number of observations).  Deriving the CRLB result 

without assuming that the signal is unknown (e.g. that its 

samples are nuisance parameters) leads to very different results 

– in fact it can be shown that the result is different depending 

on how the phase difference is embedded into the two signals.  

On the other hand, it also can be shown that when the signal is 

properly taken as unknown the CRLB result is the same 

regardless of how the phase difference is split between the two 

signals. Finally, the result shows the that CRLB on LBI phase 

estimation does not depend at all on the signal shape or 

spectrum, which means that – unlike most other methods, such 

as Doppler-based methods or TDOA-based methods – the 

expected accuracy does not depend on the type of emitter being 

located. 
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